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ABSTRACT

People with cognitive impairment have difficulties in plan-
ning and correctly undertaking activities of daily living due
to severe deterioration in cognitive skills. As a promising
solution, smart homes try to make these people live on their
own with less nursing care by providing appropriate cogni-
tive assistance while carrying out activities. For the sake
of providing adequate assistance, it is necessary to under-
stand the real intentions of residents and recognize possible
anomalous trends in time during the process of performing
an activity. In this paper, we analyze the abnormal be-
havioral patterns caused by cognitive deficits and summa-
rize them as cognitive errors which appear frequently among
people with cognitive impairment. Cognitive error detectors
are designed and integrated into a unified inference engine
based on Formal Concept Analysis theory. The inference
engine establishes a knowledge graph hierarchically repre-
senting the interrelations between indexed activities to rec-
ognize ongoing activities, and to detect predefined cognitive
errors in behavioral data streams.

CCS Concepts

•Human-centered computing → Ambient intelligence;

Keywords

Anomaly detection, sequential data analysis, formal concept
analysis, data mining, ambient assisted living.

1. INTRODUCTION
Population ageing has become a crucial issue due to world-

wide low fertility rates. As a common feature associated
with ageing, cognitive impairment has drawn increasing at-
tention from multidisciplinary scientific communities [1]. Be-
sides, various physical and mental illnesses, even certain
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drug combinations could also cause deficits in cognition [2].
Severe deterioration in cognitive skills will induce memory
difficulties, lapse of judgment and disability to schedule and
undertake multiple everyday activities [3]. Compared with
healthy people, people with cognitive impairment will nor-
mally cause more anomalous behaviors while performing di-
verse activities of daily living (ADLs), and need more care
in daily life.

Because of the cognitive deficits in the planning, memory
and attention aspects, living independently is difficult for
people with cognitive impairment [4]. Without extra help,
normal activities such as cooking activities or adherence of
medical instruction could become dangerous as well [2]. The
increasing needs of proper cognitive remediation lead to the
emergence of smart homes, which are a typical representa-
tive of pervasive assistive environments [5].

With rapid development of information and communica-
tion technology in recent years, computer scientists would
like to merge ubiquitous computing with artificial intelli-
gence and human-computer interaction technologies to con-
struct pervasive assistive environments providing daily health
monitoring and timely interventions to older adults [6] or
people in need of care. Such intelligent environments de-
vote to offer considerate ambient assisted living experience
for their residents. Moreover, the enhanced version designed
for special population like people with cognitive impairment
desires to draw support from cognitive assistance to avoid
some potential daily threats caused by cognitive deficits. For
example: forgetting to turn off the stove, excessive sodium &
sugar consumption, or unintentional misuse of medication,
etc.

In smart homes, ubiquitous computing involves the in-
teractions between residents and pervasive sensor network.
Resident’s behavioral information and ambient states, in-
cluding position, motion, device usage, energy consumption
and ambient change, could be frequently collected by various
hybrid sensors in a period of time [7]. These sequential data
which contain temporal evolution of behaviors are essential
to analyze the ongoing activity and to detect anomaly. Ab-
normal behavioral patterns are also hidden in these data. To
achieve cognitive assistance, we should first know which ac-
tivity is being done, and then identify abnormal behavioral
patterns through given data streams.

The rest of the paper is structured as follows: we dis-
cuss related work about sequential anomaly detection in the



next section. Section III introduces basic notions about our
proposed inference engine. Section IV defines common cog-
nitive errors according to the observed behavioral features
and gives out corresponding solutions. Section V presents
our evaluations in several criteria and the performance of
inference engine will also be discussed. Finally, Section VI
concludes the paper.

2. RELATED WORK
Human behavior analysis is an important issue for human-

computer interaction. Considering privacy protection, we
abandon common intrusive solutions based on a camera net-
work using pattern recognition [8] and choose non-intrusive
sensor-based sequential data analysis as our research object.

As a more general issue of cognitive errors detection, se-
quential anomaly detection has been tried to be resolved in
different ways like machine learning, data mining and ap-
plied mathematics [9]. Within a sensor network, low-level
temporal sensor data could be segmented into stages. Each
stage describes an atomic action making up high-level activ-
ities. In other words, temporal data with behavioral infor-
mation buffered in a particular period could be referred as
a sequence of actions. Similar relations are also proposed in
[10][11]. As a consequence, sequential data are temporal and
contextual, and related to each other [12]. To avoid existing
large semantic gaps between low-level sensor data and high-
level activities [13], in this paper, we choose intermediate-
level actions and high-level activities as analytic granularity.

So far, we could summarize that sequences of actions with
cognitive errors are a kind of contextual anomaly because
normal behaviors or actions could only be anomalous in spe-
cific context [12]. However, they are usually hard to be de-
tected. Firstly, Because of contextual and dynamic forms, it
is hard to ensure that all possible anomalous situations are
considered and covered in the training data sets. Moreover,
labeling anomalous samples are also prohibitively expensive
[12]. Fortunately, compared with normal patterns, anoma-
lous ones are far fewer in the training data and dissimilar
under particular criteria. Therefore, most of the solutions
are based on these two assertions and classified as similarity-
based and frequency-based methods.

Similarity-based methods are based on the assumption
that normal sequential data are dissimilar in several crite-
ria. Thus, these solutions usually focus on the methods of
machine learning, like pattern classification or cluster anal-
ysis. [14] defined a similarity scoring function using longest
common subsequent (LCS) to determine abnormal human
behaviors among low-level sensor data. [15] clustered ac-
tivities in temporal aspect and used Markov chain model to
measure whether a sequence of activities is abnormal or not.
[10] used a hidden semi-Markov model and durations of ac-
tivities to detect abnormal deviations from normal patterns.
Besides, [16] proposed a domain-independent formalism to
classify possible errors.

Frequency-based methods are based on the assumption
that patterns containing cognitive errors occur rarely in the
training data set. They try to identify abnormal patterns
with low occurrences which are seemingly biased towards the
normal ones. [17] presented a model based on the support
vector machine to filter out most of the normal activities,
and then handle suspicious ones using kernel nonlinear re-
gression (KNLR) model for further detection.

A key limitation of these previous studies is that they

do not address the customization problem and more or less
ignore the behavioral features of anomalous patterns. Thus,
it is easy to suffer from high missing and false alarm rates.

In this paper, we analyze significant features existing in
the behavioral data streams of people with cognitive impair-
ment, and summarize common cognitive errors from abnor-
mal patterns. Customer-built solutions will be proposed for
each predefined error.

In our earlier work, intermediate-level actions are extracted
from low-level temporal sensor data by RFID-based localiza-
tion [18] and electrical devices identification [7]. Real-time
activity recogntion has been realized with high accuracy in
[11]. Moreover, some abnormal behavioral patterns were
also analyzed in [5][19]. On the basis of these previous works,
in this paper, we propose a new inference engine based on
the Formal Concept Analysis (FCA) to detect predefined
cognitive errors in sequences of actions.

3. PRELIMINARIES
Our inference engine is mainly made up of two parts: ac-

tivity recognition agent (AR) and cognitive errors detection
agent (CED). As the prerequisite for cognitive errors detec-
tion, AR agent is created on the basis of FCA theory to
recognize ongoing activities in real-time, and the implemen-
tation of CED agent relies on it to detect particular features
in the patterns. In the following, we briefly review the most
fundamental notions of the formal concept analysis and some
key implementation details of AR agent to help us better un-
derstand the principle and logic behind CED agent. More
detailed explanation of AR agent is presented in [11].

3.1 Formal Concept Analysis
Formal concept analysis (FCA) is a subfield of applied

mathematics which conceptually clusters associated entities
and creates hierarchical interrelations among them by math-
ematical order theory [20]. FCA could well describe binary
relations between two sets of data. Considering our issue,
we introduce each FCA component in the following words.

3.1.1 Formal Context (Context)

Context is a triplet K = 〈G,M, I ⊆ G ×M〉 where two
non-empty sets G and M separately denote universes of ac-
tivities and actions. Set I is a subset of the Cartesian prod-
uct G ×M representing binary relations between activities
and actions. Context K could be visualized as a cross table
consisting of |G| rows and |M | columns. If m is an integral
action of activity g, there must have a cross in row g and
column m in the corresponding cross table (see Figure. 1),
expressed as gIm [20].

3.1.2 Concept-Forming Operations

Concept-forming operations are a pair of operations that
are essential to generate formal concepts. Their main contri-
bution is to quickly match all shared elements. For A ⊆ G,
we define:

A
′ := {m ∈M | for each g ∈ A, gIm} (1)

to obtain the entire common actions that are simultaneously
shared by the full activities in A.

Likewise, for B ⊆M , we define:

B
′ := {g ∈ G | for each m ∈ B, gIm} (2)



to obtain the entire activities that simultaneously own the
full actions in B.

3.1.3 Formal Concept (Concept)

Concept is a pair (A ⊆ G,B ⊆ M) satisfying the condi-
tions of A′ = B and B′ = A (i.e. A′′ = A or B′′ = B) under
context K. A and B are respectively named as the extent
and intent of concept. In our issue, an intent should be a
subset of observable actions, and the extent is a set of all pos-
sible activities possessing the full actions in the intent. Each
concept is also a stable closure under the Concept-Forming
Operations. B(G,M, I) denotes a universe containing all the
concepts of K.

m1 m2 m3 m4 m5 m6

g1 × ×
g2 × × ×
g3 × ×
g4 × × × × ×
g5 ×
g6 × ×

Figure 1: an example of cross table

3.1.4 Concept Lattice (Lattice)

Lattice is an ordered lattice structure. Suppose that (A1, B1)
and (A2, B2) are two concepts of K, (A1, B1) is called sub-
concept of (A2, B2) if either A1 ⊆ A2 or B2 ⊆ B1. Mean-
while, (A2, B2) is a superconcept of (A1, B1), and written
as (A1, B1) � (A2, B2). The relation � is called hierarchi-
cal order (partially order or simply order) that orders and
connects such two concepts.

All the concepts in the universe B ordered by � form a
concept lattice B(G,M, I). Concept lattice is another clo-
sure in K. Once a stable concept has been activated by
external factors, it will become unstable and transform into
another adjacent stable concept.

3.1.5 Hasse Diagram

Hasse diagram is a sort of line diagram in mathematical
order theory that could represent all finite ordered sets [20].
It is also the visualization of concept lattice that represents
all concepts as nodes in its graph-based multilayer struc-
ture. Each layer connects the others with Galois connection
[20]. There are two special nodes in the diagram: the top-
most node {G,∅} called Supremum and the lowermost node
{∅,M} called Infimum. Figure 2 is the Hasse diagram of
the concept lattice of the cross table in Figure 1.

3.2 Activity Recognition
As we referred above, a stable concept will be activated

while its inner structure is being changed. According to pre-
defined hierarchical orders, an unstable concept will transit
to one of its connected concepts in the Hasse diagram to
become stable again. Such transition is also the principle
of activity recognition: when an intent is progressively ex-
tended by incoming actions, the scope of possible candidate
activities is reduced.

As shown in Figure 2, the topmost Supremum indicates
the initial state of recognition process and the lowermost
Infimum indicates the final state. The intent of a concept

Figure 2: Hasse diagram

indicates the given observed actions and the extent indicates
all possible ADLs.

With the successive loading of actions (referred as intent
extensions), the cardinality of extent indicating possible ac-
tivities will be progressively reduced (referred as extent re-
ductions). Our FCA-based proposition about activity recog-
nition concentrates on locating the topmost concept contain-
ing α. More details are presented in [11].

Suppose that a sequence of actions α is successively loaded
by data stream a ≺ c ≺ b ≺ f ≺ d. Considering Figure 2,
in the first extension, when α← a, node 1 is located. When
α ← c, α = {ac}, node 6 is located and possible activities
would be {24}. At the end of the extensions, corresponding
concept is located at node 7 and activity g4 is recognized.
The trace of the locations is 1 � 6 � 7.

As can be seen from Figure 1, g1 ⊂ g2 ⊂ g4 are three
quite similar activities sharing too many actions. This phe-
nomenon is called multilevel inheritance. In AR agent, we
adopt the greedy strategy to match the longest pattern until
the end of the sequence. Thus, when g1 or g2 have been rec-
ognized, we continue the recognition process to determine
whether there are new actions coming to accomplish g3.

4. COGNITIVE ERROR DETECTORS
Due to cognitive deficits, people with cognitive impair-

ment have difficulties in performing self-care tasks on their
own. The sporadic memory loss has frequently occurred
during their performance of an activity [5], and they tend
to produce more abnormal behavioral patterns than healthy
people. In this section, we summarize common cognitive
errors and discuss how to detect them based on their behav-
ioral features.

4.1 Problem Settings
For the reason of varied living habits or other external

factors, an activity could be described by different sets of
actions having different optional actions. Even if having the
same set, two sequences of actions could be totally different
because of different execution orders and repetitive actions.
Thus, an activity usually has Ni derivative sequences pos-
sessing j different sets of actions (Ni ≫ j). Before represent-
ing our solutions, we formally define a sequence of actions
captured by sensor network in smart homes.



To simplify the description about our research issue, in
the real scenarios, we define that a sequence of actions αj

describing activity Ai should be a container (not a set) of:

• essential actions set E =

Ni⋂

i=1

αi, which contains all

essential actions existing in all Ni derivative sequences
of Ai.

For example, ‘boil water’ and ‘pour water into a teacup’
are two essential actions for the activity ‘prepare a cup
of tea’, because they exist in any execution sequence αi

describing a process of making a cup of tea, no matter
who does it.

• optional actions set O =

Ni⋃

i=1

αi−

Ni⋂

i=1

αi, which indicates

different optional actions for Ai.

For example, ‘add milk’ could be somebody’s personal
taste when drinking tea, but not exist in all the se-
quences describing ‘prepare a cup of tea’. So it is a
typical optional action.

• possible irrelevant actions set I that I ∩

Ni⋃

i=1

αi = ∅.

For example, ’take out pasta from cabinet’ is an irrel-
evant action for ‘prepare a cup of tea’ and it will not
exist in any its normal execution sequence.

• possible redundant actions R ⊆

Ni⋃

i=1

αi, which con-

tains all the actions existing in entire Ni derivative
sequences of Ai.

So we give out our generic symbolic representation of a se-
quence of actions αj in the form of a triplet:

αj = ({E ∪O
′ ∪ I

′ ∪ R
′},�j , C) (3)

where O′ ⊆ O, I ′ ⊆ I , R′ ⊆ R, and �j defines a possible
permutation of the union (i.e. an execution order). C is a set
of causal constraints limiting the permutation �j . Thus, we
could assert that αj is a normal sequence of actions without
cognitive errors if and only if set E is complete, sets I ′ and
R′ are empty, and �j satisfies all the constraints in C.

From the definitions above, we could find out that differ-
ent sets and their permutations play key roles in the consti-
tution of cognitive errors. In the following words, we present
how to detect each error using our inference engine.

4.2 Cognitive Error Definitions
In this part, by observing and tracking the daily life of

people with cognitive impairment, first of all, we analyze
abnormal behavioral patterns appearing in their activities of
daily living. And then, through behavioral features analysis,
we give out costumer-built solutions for each summarized
cognitive errors.

4.2.1 Initialization

Initialization problem is related to the short-term memory
loss. The typical behavioral feature is about doing nothing
at the beginning phase while performing an activity. A sim-
ple solution is to set a temporal threshold to detect whether

a resident starts to do something at the early stages or not.
In this paper, initialization error will not be considered in
the parts of evaluation and discussion.

4.2.2 Omission of essential actions

An omission is a failure to do something that ought to be
done, but was forgotten, according to the initial planning. It
is a very usual scenario in daily life, even for healthy persons.
Sometimes, there is only a limited influence for performing
an activity. For example, there is no big deal if a resident
forgets to do the optional actions in set O like personal pref-
erences. However, in most of the time, the omission of essen-
tial actions will disrupt the integrity of the implementation
(e.g. forgetting to add some ingredients while cooking) and
the quality of accomplishment will also be affected. In some
extreme cases, it will lead serious or fatal consequences (e.g.
forgetting to turn off the oven after use).

As we analyzed above, the optional actions in set O are
less important than the ones in set E, and bring less trouble
while being omitted. Due to the set-based dual structure
of concepts, it is easy to check the final completion of im-
plementation using set theory: if the universal actions of an
activity Ai is denoted as Ui, the forgotten actions could be
calculated as the relative complement SC = Ui − S, where
S is current sequence of observed and finished actions. It
is worthy to mention that Ui could be quickly obtained by
executing the concept-forming operation A′

i or searching the
cross table.

Example: suppose that the actions in sequence α = {a ≺
c ≺ b ≺ f} is successively loaded. Considering Figure 2,
node 7 is located at the end of the extensions. To check
the completion of g4 indicating in the extent, we compare
current sequence α = {acbf} with g′4 = {abcdf}, and the
complement g′4−α = {d} is not an empty set, so action d is
omitted during the execution of g4.

4.2.3 Unreasonable repetition

The reason of redundant information existing in the data
stream could be various: periodic sampling of sensors, rea-
sonable intention or anomaly etc. In our issue, the redun-
dant information should be the repetitive actions existing in
a sequence of actions. In most cases, repetitive actions are
harmless, even reasonable and necessary to accomplish an
activity. For example, we need to regularly check the de-
gree of cooking or intermittently stir the ingredients while
preparing a meal. In the other extreme cases, unreasonable
repetitive actions will lead to potential threats like excessive
consumption (condiments or medications).

The simplest solution is to check whether the incoming
action exists in the current sequence of actions α. To distin-
guish the unreasonable repetition caused by cognitive deficits
with the reasonable ones, we define a weighted array to mea-
sure the harm degree of each action being repetitive. For this
reason, the detection accuracy of harmful redundancy could
be reinforced and the false-positive alert warning harmless
redundancy could be reduced.

4.2.4 Mixture of irrelevant actions

People with cognitive impairment often forget current plan-
ning or confuse with another one, and then add irrelevant
actions into the current ongoing activity. From Equation 3,
we could see that irrelevant actions set I of activity Ai has
no intersection with the relevant one E∪O. In other words,



an extension caused by an incoming action a is acceptable
for current planning if and only if a ∈ E ∪ O. Thus, full el-
ements in I will be excluded by all the concepts containing
Ai.

After a new extension, if updated α is no longer compati-
ble with any concept except the Infimum, there are probably
one or more actions are irrelevant which have mixed into the
current sequence, especially the last incoming one should be
suspected.

Example: suppose sequence α is successively extended by
{a ≺ c ≺ e ≺ d ≺ b ≺ f}. Node 6 is located after the first
two extensions α← ac. In the third round, α← e, updated
α = {ace} is incompatible with current planning because
there is no subconcept (A,B) having α ⊆ B except the In-
fimum. As a consequence, last incoming e will be treated
as an irrelevant action which have to be removed from the
initial cache and put it aside, into a new created cache indi-
cating another planning. At the end of the extensions, node
7 is located and the irrelevant action e is identified.

We summarize the logic above and represent it as pseu-
docode in Algorithm 1. Cache P0 always denotes the initial
planning of a resident. A new incoming action a is observed
and loaded for extension at step 3. Step 4 to 7 is to check
whether there exists one or more caches in Pi are compatible
with current observed actions. If incoming action a is irrele-
vant to all existing caches (step 9), then create a new cache
to save it (step 10 to 11). After extensions, we choose the
longest cache, P0 in most of time, as the normal sequence
of actions performing Ai (step 12), and the actions in the
other caches will be treated as irrelevant actions.

Algorithm 1: detect mixture of irrelevant actions

Data: sequence α, lattice L, caches Pi.
Result: set of irrelevant actions I.

1 begin
2 while α do
3 a ← α.popleft
4 foreach Pi do
5 if ∃(A,B) ∈ L, Pi ∪ a ⊆ B then
6 Pi ← Pi ∪ a

7 end

8 end
9 if ∄(A,B) ∈ L, Pi ∪ a ⊆ B then

10 Pi+1 ← a

11 Pi ← Pi + Pi+1

12 PM ← max(size(Pi))

13 end

4.2.5 Causal conflict

Suppose two actions, αi ≺ αi+m, appear successively in
the sequence α = {α0 ≺ ... ≺ αi ≺ ... ≺ αi+m ≺ ... ≺ αn}.
If causal constraints C has limited that αi+m must occur
before αi, represented as αi+m � αi, then there is a causal
conflict in the sequence.

In this paper, we manually define causal constraints and
then verify the causalities among actions in α. For any ac-
tion αi in the sequence, we generate its causal pairs by scan-
ning all the actions on its right. If one generated pair (αi, αj)
has the opposite one (αj , αi) in C and no αj appeared be-
fore αi, then the sequential execution αi ≺ αj is against the
predefined causality. The time complexity of causal conflict

Figure 3: cognitive distraction.

check is T (O(n2)).

4.2.6 Cognitive distraction

Cognitive distraction is similar to adding irrelevant ac-
tions. Compared to original planning, the two errors have
the same feature that they are mixed irrelevant actions into
their sequences of actions, but cognitive distraction has cre-
ated a transformation of quantitative into qualitative changes.
Different from the mixture of irrelevant actions, this error
could be classified as a collective anomaly [12]. The feature
of cognitive distraction is that at the beginning of the se-
quence of actions, all the performed actions belong to a real
expected long-term planning. At a specific singular point,
the performed actions started to distract from the original
objective.

Figure 3 is an example of cognitive distraction. Planning
0 is used to indicate the original planning of a resident and
Planning 1 and 2 denote his/her distracted traces. A Black
point represents a hit that the loaded action used for exten-
sion in this step is accepted by the positioned cache and the
Hasse diagram, and a white one indicates a missing.

The cognitive distraction really happens in the fourth ex-
tension and T1 indicates this singular position. The loaded
action a4 has not been accepted by the Planning 1 due to its
irrelevance. Once an action is not acceptable for all existing
caches, we need to put it in a new one. There is only one
black point at the moment of new cache creation. Moreover,
if an action is compatible with more than one cache, it must
be distributed into each compatible cache. At the end of
the extensions, we choose the longest cache having the most
compatible actions as the normal sequence of actions. If the
longest cache is not Planning 0, we could assert that the
resident has distracted from his/her real objective.

5. EXPERIMENTS
In this section, we first introduce the characteristics of

experimental data sets, and then evaluate the performance
of detecting predefined cognitive errors.

5.1 Data sets
Our experiments were carried out on two data sets created

by LIARA laboratory: real data set RDATA consisting of
seven activities captured by the sensor network of LIARA’s
smart home, and synthetic data set EDATA containing pre-
defined cognitive errors.

Two benchmark data sets, ADLActivities and Activities
WithErrors (hereafter referred as CASAS and ECASAS)
[6], were also used to evaluate the performance of our in-
ference engine. Both of them describe the same ADLs, but
the latter contains errors in its data stream. So we use the
former data set to train our inference engine in order to de-
tect the errors in the latter. The use of the benchmark data



sets mentioned above is an attempt because their records are
low-level sensor data streams, not the higher-level sequences
of actions.

Considering complicated scenarios and more interactions
between activities, we choose kitchen activities as our main
research objects. Statistical information about adopted ac-
tivities named in camel case is shown in Table 1.

Table 1: Statistical information of kitchen activities
activities No. component actions
PrepareCoffee 14
PrepareCoffeeWithoutSugar 11
PrepareCoffeeWithoutMilk 11
PrepareSpaghetti 18
PrepareSandwich 15
PrepareCereal 8
PreparingToastsAndEggs 20

Raw records in RDATA contain four fields: temporal in-
formation, spatial-topological information [18], identified ac-
tions and corresponding activities. To simplify the prob-
lem, we refined the records and only kept the information
about identified actions and corresponding activities. We
extracted the same fields from ECASAS.

To avoid underfitting, for each indexed activity in RDATA,
we kept the set of actions unchanged, but disrupted the in-
ternal execution orders under the condition of following the
causal constraints among actions. Thus, we obtained suf-
ficient derived sequences of actions that could be used for
training models or generating test cases with cognitive er-
rors. On the basis of these derived sequences, we randomly
changed their inner structures (e.g. removing, adding, re-
peating, splicing and swapping actions) to create the test
data set EDATA with mentioned cognitive errors.

5.2 Evaluation
In our experimentation, we carried out all the evaluations

on one laptop with tech specs of Intel Core i7 Processor
2.4GHz and 8GB RAM, under Ubuntu 14.04.

Table 2 sketches the accuracies about cognitive errors de-
tection applied on the two test data sets. 3-fold cross-
validation was also used to avoid overfitting.

From the listed results in Table 2, we could see that our
engine received excellent detection rates in four cognitive
errors except the cognitive distraction. One of the reasons
is that the detection accuracy of cognitive distraction er-
ror depends on the singular position when the distraction
occurs. Figure 4 shows the F-measure at different singular
positions. The precision at each position is always equal to
1 (TP=1.0 and FN=0.0). It is worth mentioning that the
result of causal conflict detection was based on the manually
defined causal constraints (marked as “M”).

For CASAS, there are only two predefined errors existing
in the test samples: omission (did not turn the water off, did
not turn the burner off, did not bring the medicine container,
did not use water to clean and did not dial a phone number)
and repetition (dialed a wrong phone number and redialed,
duplicate sampling of motion sensors, etc.). We used “-” to
represent the nonexistent results in Table 2. Furthermore,
we evaluated its results under evaluation metrics, including
precision, recall and F-measure in Table 3.

5.3 Discussion

Table 2: cognitive error detections in EDATA

cognitive errors
data sets/ACC

EDATA CASAS
omission of essential actions 100% 88.5%
mixture of irrelevant actions 100% -

unreasonable repetition 100% 100%
causal conflict 100% (M) -

cognitive distraction ≥ 97.8% -

Figure 4: cognitive distraction detection in EDATA at differ-
ent singular positions

With reference to the architecture sketched in Figure 5,
in this section, we provide a detailed overview of our infer-
ence engine and summarize the advantages and drawbacks
in terms of cognitive errors detection.

First of all, our smart home collected low-level sensor
data from a sensor network in a period of time. With the
help of our previous work [7][18], human-unreadable sensor
data have been successfully transformed into atomic actions
cached in continuous sequences of actions.

Then, inside the inference engine, activity recognition agent
was trained by historical behavioral data. Interrelations be-
tween different activities, referred as sets of shared actions,
have been hierarchically represented as nodes in a Hasse dia-
gram. In this way, activity recognition could be formulated
as a graph matching problem. Moreover, a RMSD-based
(root-mean-square deviation) assessment was used to assess
and select the most probable activity among several possible
candidates during the recognition process [11].

Next, after the features analysis of common abnormal be-
havioral patterns, combined the advantage of FCA in dis-
crete mathematics, we gave out different solutions for de-
tecting predefined cognitive errors.

Omission of essential actions and unreasonable repetition
are two cognitive errors strongly related to the set theory of
discrete mathematics. Through simple algebra of sets and
binary operations on sets, they could be easily detected. As
shown in Table 2, repetitive actions in the sequence were
100% detected, but not all of them are unreasonable. For
example, in CASAS, due to the deployment of motion sen-
sors and periodic sampling, sequences are filled with repeti-
tive events. The existence of motion sensors in CASAS also
affects the result of the omission error detection. Irregu-
lar movements of residents produce massive derivative sets



Figure 5: architecture of FCA-based inference engine

Table 3: cognitive errors detection in CASAS
cognitive
errors

precision recall F-score

omission 0.656250 1.0 0.792453
repetition 1.0 1.0 1.0

of actions having negligible movements as elements of the
optional actions set O. Thus, the repetition and omission
existing in the sequence of sensor data will lead high false-
positive rate (12.3%).

As we mentioned in Section 4.2.3, some of the repetitive
actions are also necessary to ensure the quality of activity
implementation. In order to reduce the false-positive rate
and to increase the true-positive rate at the same time, it
is worthy to note that a weighted array was defined for the
unreasonable repetition error to automatically adjust the de-
tection sensitivity on the basis of the severity of each repet-
itive action. This strategy will also be imported to omission
detection in the future work.

To detect causal conflicts in a sequence, compared to sim-
ple binary operations on set, the biggest challenge to over-
come is the source of causal constraints. As the result shown
in Table 2, causal constraints defined by human expert are
accurate and easy to be deployed into conflict detection, but
the definition was also prohibitively expensive.

The rest two cognitive errors, mixture of irrelevant actions
and cognitive distraction, are more complex than the others
because of the ambiguous singular position between original
intention and the abnormal one. Multilevel inheritance and
varied singular positions also aggravate the complexity of
situations. In the worst case, some samples with distraction
errors will be identified as a series of repetition errors in this
case.

With our new semi-supervised approach, we do not need
to consider imbalanced class distribution. Only normal classes
corresponding to normal behavior could be used for building
a model to identify anomalies in the test data.

6. CONCLUSION
Due to the deterioration in cognitive skills, people with

cognitive impairment frequently produce cognitive errors when
they carry out activities of daily living. In this paper, we for-

mulated the most common cognitive errors existing among
people with cognitive impairment. Under the unified hierar-
chical FCA-based inference engine, we proposed a series of
customer-built detectors to detect predefined cognitive er-
rors in the sequences of actions. Moreover, we also defined
several dynamic mechanisms to reduce the false-positive rate
according to predefined weights. Unlike the other similar-
ity or frequency-based approaches, our frameworks do not
require the fault samples should be available in advance.

However, our approach has severe constraints on the train-
ing data. To ensure the correctness and completeness of the
constructed Hasse diagram model, training data are required
to cover diverse sequences of actions containing varied sets
of actions executing the same activities as many as possible.
Insufficient training sample will cause a high false alarm rate
in detecting omission of essential actions (i.e. wrongly iden-
tify the subset derivative sequences) and mixture of irrele-
vant actions (i.e. wrongly identify the superset derivative
sequences).

Our approach also need to ameliorate the detection perfor-
mance by considering more rigorous logic to solve the mul-
tilevel inheritance problem. As a potential solution, in our
future work, we will integrate the knowledge about ontology
to extract the common part of component actions among
the activities with multilevel inheritance and furthermore
improve accuracy in the imperfect parts. To reduce pro-
hibitively expensive work of causal constraint definition, we
will to design a heuristic method to generate those causal
rules automatically. Furthermore, we also would like to test
our approach in more complicated scenarios like multitask-
ing and interleaving modesd.
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