
Real-time Activity Prediction and Recognition in
Smart Homes by Formal Concept Analysis

Jianguo Hao, Bruno Bouchard, Abdenour Bouzouane, Sébastien Gaboury
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Abstract—In this paper, we introduce a new knowledge-driven
approach based on the Formal Concept Analysis (FCA) to predict
and recognize Activities of Daily Living (ADLs) in ubiquitous
computing environments, in order to duly provide continuous
assistance for residents. The proposed approach constructs an
incremental inference engine and achieves progressive deductive
reasoning to recognize an unfinished ongoing ADL in real-time.
For the purpose of finding out the most probable ongoing activity
among possible candidates, we propose an assessment based on
the root-mean-square deviation (RMSD) to evaluate the relevance
of each intermediate prediction. Besides the on-the-fly recognition
mode, our approach also possesses high discrimination in dif-
ferentiating derived and similar activities. Excellent recognition
results (almost 100%) and high prediction accuracies (more than
70%) are obtained in the experiments.

Index Terms—Smart environment, activity prediction, activity
recognition, data mining, formal concept analysis.

I. INTRODUCTION

In the 21st century, due to the low fertility rate all over
the world, population ageing has become a crucial worldwide
issue. As one of the most common diseases of old age [1],
Alzheimer’s disease has attracted more and more attention
from multidisciplinary scientific communities. The patients
suffering from Alzheimer’s disease are always in need of
specific intervention and supervision [2], so Alzheimer’s dis-
ease is actually one of the most financially costly diseases
in developed countries. Its main symptom is related to the
planning problems [3]. Compared to healthy people, when
carrying out Activities of Daily Living (ADLs), Alzheimer’s
patients tend to produce more implementation errors due to
cognitive deficits [4].

With huge commercial prospects and rapid development of
information and communication technology in recent years,
smart environments have become a very active research topic.
As a promising solution, the design of smart homes tries to
make people with cognitive impairment live on their own
with less nursing care by providing appropriate assistance
while carrying out activities. To achieve this goal, as one of
the most important prerequisites, smart homes first have to
recognize and understand an ongoing ADL in real-time, even
predict it in advance, and then offer assistance. Hence, in this
paper, we focus on the issue of real-time ADLs prediction and
recognition.

II. RELATED WORK

Under the help of home automation and ubiquitous com-
puting, new generations of smart homes devote to provide
dynamic, intelligent, suitable and considerate personal services
to their residents. To accomplish this mission, the main work
of research concentrates on analysing massive heterogeneous
data captured from various sensors and wearable devices [5].
According to different types of data, the solutions about ADLs
recognition could be broadly classified as two categories:
vision-based and non-vision-based approaches.

Vision-based approaches firstly use cameras to capture
image sequences for tracking real-time positions of objects
and for identifying the states of moving objects by image
processing or pattern recognition, and then recognize related
activities by machine learning [6], semantic ontology [7], or
by the other methods. According to information entropy [8],
vision-based approaches possess more complete information
and interpret more details than non-vision-based ones.

Although excellent results have been shown in some specific
issues like multiple people activity recognition [9], vision-
based approaches have also brought in the debate surrounding
privacy at the same time. Non-vision-based approaches have
no such controversy over privacy because their captured data
contains less private information. They usually rely on object-
attached radio-identification devices or on numerical sensors
(e.g. wearable, binary, infrared, pressure, etc.) to collect di-
verse values about the current states (e.g. distance, motion,
ambient change, device usage, energy consumption, etc.).
Because of the inherently existent large semantic gaps between
low-level sensor data and high-level human behaviors [10], the
ultimate goal of non-vision-based approaches always focuses
on choosing appropriate analytic granularity and furthermore
on interpreting the raw captured data. Solutions about the
latter case are mainly based on signal analysis [11], logical
reasoning [12], semantic ontology [13], probabilistic statistics
[14] or on data mining [15].

Low-level sensor data, intermediate-level atomic actions
and high-level ADLs are the three most commonly chosen
levels of granularity in the research of ubiquitous computing
[13]. We define their interrelations as follows: each atomic ac-
tion (hereafter referred as action) is the smallest topic-related
meaningful behavioral unit describing one short-term intention



of a resident and should be detected by one or more sensors.
Each ADL consisting of more than one action indicates the real
long-term intention of the resident. Thus, considering the issue
about providing timely cognitive assistance in smart homes,
the combination of intermediate-level actions and highest-level
ADLs should be the most appropriate analytic granularity.

In our previous researches, the mapping between sensor data
and related actions was successfully established. Sufficiently
accurate sequences of actions were obtained by electrical
devices identification [11] and by passive RFID technology
[15]. These previous work could make us concentrate on the
suitable analytic granularity in the next study. Moreover, a
logic framework based on four-level lattice was also defined
for plan recognition [16], and it prompts us to solve the
activity recognition problem with more mature lattice-based
models. On the basis of these experiences, we introduce a
novel approach based on the Formal Concept Analysis (FCA)
to predict and recognize complex ADLs.

The rest of the paper is organized as follows. In the
next section, we put forward the new solution about ADLs
prediction and recognition in our non-intrusive, passive RFID-
based ubiquitous computing environment. In Section IV, we
demonstrate the excellent performances on various criteria
and evaluate the experimental results. The advantages and
disadvantages are discussed in Section V. Finally, we conclude
in Section VI.

III. REAL-TIME ACTIVITY PREDICTION AND
RECOGNITION BASED ON FCA

In this section, we first start by giving some knowledge
about FCA, including its basic definitions, construction meth-
ods and visual representation. Then, through feasibility anal-
ysis, we explain the rationale why FCA-based models are
effective in handling ADLs recognition and varied related
problems. Next, as one of the most important roles of our
approach, we introduce in detail our conception about how to
incrementally search and locate a given sequence of actions in
the FCA-based knowledge base for real-time ADLs prediction
and recognition. Finally, we present how to assess each
intermediate prediction to find out the most probable ADL.

A. Basic Definitions

An objective concept is an abstract representation describing
a thing or a scenario in reality. As a subfield of applied mathe-
matics, FCA clusters seemingly scattered concepts and creates
interrelations among them by mathematical order theory [17].
FCA has excellent ability in concept hierarchy analysis and
could well describe binary relations between two sets of data
which commonly appear in many areas of human activities
[18]. In the following statements, we introduce each FCA
component and its corresponding mathematical representation.

1) Formal Context (Context): is a triplet K = ⟨G,M, I ⊆
G×M⟩ where G and M are two non-empty sets that define
the analytic domains. The elements in G and M are severally
called the objects and the attributes of K. Set I is one subset of

Cartesian product G×M representing binary relations between
G and M , which defines the issue to be solved.

The content of K could be visualized as a binary matrix
consisting of |G| rows and |M | columns (see Figure 1). If an
object g has a binary relation I with an attribute m, there will
be a cross in row g and column m in the corresponding binary
matrix, expressed as gIm [17].

ma mb mc md me mf

g1 × ×
g2 × × ×
g3 × ×
g4 × × × × ×
g5 ×
g6 × ×

Fig. 1. An example of binary matrix

With the help of such triplet structure, we could derive
different issues in light of different analytic granularity. Let’s
take our activity recognition problem as an example. Suppose
that in ubiquitous computing environment, a set of Sensor
states is denoted as S, a set of Observable sequences of actions
is denoted as O and an ADLs set is denoted as A. Thus, we
represent the three most common issues as follows:

• ⟨O,S, I ′⟩: action recognition by sensor states analysis.
• ⟨A,S, I ′′⟩: ADLs recognition by sensor states analysis.
• ⟨A,O, I ′′′⟩: ADLs recognition based on the analysis of

sequences of actions.
Figure 2 illustrates the mappings above. As mentioned

earlier, to recognize complex ADLs, the combination ⟨A,O⟩
is more meaningful than the other ones. Therefore, in this
paper, non-empty set G denotes the ADLs to be recognized
and M represents the actions in the observed sequences.

2) Concept-Forming Operations: Each context induces a
pair of operations, so-called the concept-forming operators
[18], that are very important to form formal concepts. Their
main function is to match all shared elements quickly. For
A ⊆ G, we define:

A′ := {m ∈M | for each g ∈ A, gIm} (1)

to obtain all attributes shared by all objects from A.
Likewise, for B ⊆M , we define:

B′ := {g ∈ G | for each m ∈ B, gIm} (2)

to obtain all objects shared by all attributes from B.

Fig. 2. Multilevel structure existing in ubiquitous computing environments.



3) Formal Concept (Concept): is a pair (A ⊆ G,B ⊆M)
meeting the conditions of A′ = B and B′ = A (or we
can express A′′ = A or B′′ = B) under K. A and B are
respectively called the extent and the intent of the concept. As
a matter of fact, each concept is a stable tiny closure. No matter
how many times the Concept-Forming Operations have been
taken, the extent and intent will not be spontaneously changed.
B(G,M, I) denotes the universe containing all concepts of K.

4) Concept Lattice (Lattice): is an ordered lattice structure.
Suppose that (A1, B1) and (A2, B2) are two concepts of a con-
text K, (A1, B1) is called a subconcept of (A2, B2) if either
A1 ⊆ A2 or B2 ⊆ B1. Meanwhile, (A2, B2) is a superconcept
of (A1, B1), and written as (A1, B1) ⪯ (A2, B2). The relation
⪯ is called the hierarchical order (partially order or simply
order) that orders and connects two hierarchical concepts.

All the concepts in the universe B ordered by ⪯ form a
lattice B(G,M, I). It is another closure of K: once a stable
concept has been activated by external factors, it becomes
unstable and will transit to another adjacent stable concept.

The question concerning about how to construct a lattice
from a binary matrix is outside the scope of this paper. The
construction of lattice is the process that enumerates all the
concepts of a context K and orders them simultaneously. In
recent decades, great effort has been devoted to the study of
efficient constructions [19]. Our implementation is based on
Christian Lindig’s research [20] due to excellent performance.

5) Hasse Diagram: in mathematical order theory, every
finite ordered set can be represented by a line diagram called
Hasse diagram [17]. It is also a visualization of lattice that
represents component concepts as nodes of graph-based mul-
tilayer structure (see Figure 3). There are two special nodes:
the topmost node {G,∅} called the Supremum and the low-
ermost node {∅,M} called the Infimum. Each layer connects
another one or two adjacent layers by Galois connection [17].
Furthermore, any two adjacent layers generate a bipartite graph
and no concept connects with another one in the same layer.

B. Feasibility Analysis

In the following statements, we analyze the feasibility about
using FCA to predict and to recognize ADLs from real-time
sequences of actions captured by the sensor network in a smart
home. Our discussion surrounds in three aspects as follows:

1) Knowledge Representation: as shown in Figure 2, the
relations in the multilevel structure are easy to be transformed
into binary relations. If an element m in a lower level connects
to an element g in a higher one, it means that there is a relation
I between them, represented as gIm. All the connections
between two different levels could be represented as the
crosses in the corresponding binary matrix.

2) Hierarchical Structure: as a visualization of FCA, lattice
B(G,M, I) is made up of all the concepts belonging to
a context K. The property of concept closure ensures the
uniformity that any constraint restricting to any component
element of a concept must be concurrently respected by the
rest of the other component ones in the same extent or intent.

As we referred before, a stable concept will be activated
while its inner structure is being changed by intent extension
or extent reduction. According to the predefined hierarchical
order, an unstable concept will transit to one of its connected
concepts in the Hasse diagram to become stable again. Such
transition is also the basic principle of our ADLs recognition
strategies. It is worth mentioning that this kind of transitions
will not cause the structure change of lattice.

As shown in Figure 3, the topmost Supremum indicates
the initial state of the process and the lowermost Infimum
indicates the final state. The intent of a concept indicates the
given observed actions and the extent indicates all probable
ADLs. Their meanings behind the mathematical abstractions
are also consistent with the realistic logic: For the Supremum,
if a resident did not do anything (i.e. intent is empty), his
real intention is unpredictable and any indexed ADLs could
be done next (i.e. extent is the universe of indexed ADLs). For
the Infimum, there is normally no activity (i.e. extent is empty)
consisting of all indexed actions (i.e. intent is the universe of
indexed actions).

For any concept in B except the Infimum, its extent will
shrink in size when a new observed action extends the intent.
The activated concept will transit to one of its subconcepts,
or we can say that it is shifting towards the Infimum. The
shrunken extent A↓ is the subset of the old one A, denoted as
A↓ ⊂ A. Equation (3) describes this property as below:

B↑ := B ∪m =⇒ (A↓, B↑) ⪯ (A,B) (3)

where m ∈M is the incoming action which has already been
indexed, but not existed in the intent (m /∈ B) before the
extension. The subscript arrows indicate the changes in size.

With the successive loading of actions (referred as intent
extensions), the scope of possible ADLs will be reduced
progressively (referred as extent reductions). This process
produces many intermediate transited concepts called local
optimal concept containing inferred ADLs called local
optimal solutions in each extent. Meanwhile, a non-Infimum
concept is considered global optimal concept if and only if
the Infimum is the sole subconcept in the following possible
intent extensions. Thus, the issue about ADLs prediction and
recognition in sequences of actions has been rewritten as
how to progressively locate local optimal concepts in a Hasse
diagram during successive intent extensions. For this reason,
it could also be regarded as a graph search process from the
Supremum to Infimum in a Hasse diagram.

3) Properties: Due to specific data structure based on set
and graph theories, FCA-based models have strong robustness
against several common errors. This feature is mainly reflected
in:

Fault Tolerance: FCA-based models are compatible with
redundancy and incompleteness. Because of the set-based fea-
ture described in Equation (4), incoming redundant elements



that have already existed in a stable concept will not trigger
the concept transition during intent extensions.

m ∈ B =⇒ m ∪B = B (4)

For incompleteness, global optimal concepts could also be
located at most of the time. Even though in worst case, the
incompleteness only makes a global optimal concept have
more than one possible prediction (i.e. more than one element
in the extent), but it will not lead to illogical inferences.

Excludability: FCA is naturally sensitive to irrelevant ele-
ments. If m is an irrelevant element having no binary relation
with any element in the extent, after intent extensions, there
is definitely no subconcept containing the subset m ∪ B.
Furthermore, current unstable concept will shift directly to the
Infinum.

The two properties above have demonstrated the great po-
tential of our FCA-based approach in cognitive error detection.
The former not only makes the real-time ADLs recognition
in noise data become possible, but also provides a feasible
solution for detecting and reminding unfinished ADLs. The
latter could be used to detect those irrelevant actions mixing
into current plan.

C. Real-time Prediction and Recognition

As mentioned above, the issue about ADLs prediction and
recognition based on FCA is similar to a graph search process.
Their core ideas are both to establish an efficient strategy to
look for the most similar patterns in a graphical knowledge
base through limited observed clues. A FCA-based model is
such a well-constructed knowledge base which contains all
predefined patterns to deduce possible ADLs like an expert
system through given sequences of actions.

Suppose a sequence α is an ordered list of actions, denoted
as α = {α1 ≺ α2 ≺ ... ≺ αm}, where αj ≺ αj+1

means action αj occurs before αj+1. In this paper, sequence
α is defined as an ordered cache successively loading all the
detected actions obtained by previous work [11][15]. At the
same time, we also define a token to simulate serial transitions
of the concepts in the excited state in the Hasse diagram.

Because of the successive manner loading actions, clas-
sical graph traversal strategies could not perfectly meet our
requirements in incremental reasoning. Most of them traverse
the whole graph to locate their target and could not recall
and continue the previous interrupted position in the following
searches. When a new observed action is loaded into α, they
have to start over again for searching the updated α and
abandon all the previous reasoning.

For these reasons, we propose an incremental graph search
algorithm for locating local optimal concepts in the FCA-based
models. Each new search could continue from the previous
interrupted position. The advantage is not only reflected on
the efficiency, but also on the consistency of reasoning. Unlike
searching for a particular node or the shortest path, our issue
concentrates on matching the expanding α with all concepts in
the Hasse diagram and locating local optimal concepts (A,B)
that α ⊆ B. There is usually more than one superset satisfying

α ⊆ B. If α ⊆ B1 and B1 ⊆ B2, then α ⊆ B2, but only the
topmost superset containing α could ensure the consistency
of searches. This hypothesis is described in Equation (5) as
follows:

∀B ⊇ α, Tb ⊆ B =⇒ (A,B) ⪯ (TA, Tb) and A ⊆ TA (5)

where Tb is the topmost and also the smallest superset of α.
That is, all the other supersets of α are also the supersets of
Tb. Meanwhile, the affiliated concept (TA, Tb) is the topmost
superconcept, and TA is the superset of all the other extents.
For example, in Figure 3, if α = {b}, then node four
n4(124, ab) is the topmost superconcept we are looking for. If
we choose another concept (e.g. node six n6(24, abc)) instead
of the topmost one, several inferred elements in the extent will
be lost (e.g. {124} − {24} = {1}) and could never be found
in the following searches (i.e. if {1} is missed in n4, it could
never be found in node n6 and its subconcepts).

The following statements are divided into two parts. Firstly,
we discuss our proposition about incremental graph searching
algorithm for ADLs prediction and recognition. Secondly,
considering a common problem named multilevel inheritance,
we introduce a greedy search strategy as a simplified solution.

1) Graph Search Algorithm: Breadth-first search (BFS) is
one of the most common graph traversal algorithms. The
main idea is to explore all the neighbor nodes in the same
level before moving to the next level neighbors. Because of
the successive manner loading α, BFS is more efficient than
another common search algorithm called depth-first search
(DFS) in our case. However, just like the other classical
algorithms, BFS itself could not well locate each topmost
superset. If we simply suppose that the first concept containing
α discovered by BFS is the topmost one, it seems like no
problem. However, considering the example in Figure 3, if
α = {abc}, then n7 is always the first suitable concept
discovered because of the paths n0 → n2 → n7 is shorter
than n0 → n1 → n4 → n6, but n7 ⪯ n6.

Thus, on the basis of BFS, we propose a new half-duplex
graph search algorithm (HGS) to locate each local optimal
concept, which is also the topmost superconcept containing
each expanded α. As can be seen from the name, HGS is
a half-duplex search consisting of two directions search. The
top-down search firstly locates the first discovered supercon-
cept containing α. And then, starting from there, the down-top
search turns back along the hierarchical order and looks for
the topmost superconcept. More details about HGS algorithm
are sketched in Pseudo-codes (1) and (2).

In Pseudo-code (2), we need to pay attention to Line
(12) which seeks the superconcept containing the minimal
cardinality of intent in set S. The cardinality of an intent
means the minimal amount of steps (actions) needed to
completely achieve the concept. Dues to Equation (5),
we could see that the topmost superconcept has smaller
cardinality than any other supersets of α.



Fig. 3. Hasse diagram generated from the binary matrix in Figure 1.

Algorithm 1: Top-down search of HGS algorithm
Data: start position sp, sequence α.
Result: first met superconcept containing α.

1 begin
2 fifo ← node[sp]
3 while fifo do
4 if fifi[0] not visited then
5 mark as visited
6 if α ⊆ fifo[0].intent then
7 return fifo[0]
8 else
9 add fifo[0].successors into fifo

10 remove fifo[0] from fifo
11 end
12 end

Algorithm 2: Down-top search of HGS algorithm
Data: start position sp, set α.
Result: topmost superconcept containing α.

1 begin
2 fifo ← node[sp].predecessors
3 S ← ∅
4 while fifo do
5 if fifi[0] not visited then
6 mark as visited
7 if α ⊆ fifo[0].intent then
8 add fifo[0].predecessors into fifo
9 S ← S ∪ fifo[0]

10 remove fifo[0] from fifo
11 end
12 return argmin

s∈S
(| s.intents |)

13 end

2) Graph Search Strategy: Beyond the issue of locating
each topmost superconcepts, we also need to consider another
tough issue about multilevel inheritance. Multilevel inheritance
is a very common situation existing in ADLs due to diverse
lifestyles and personal habits. Besides flexible execution or-
ders, an ADL could also be accomplished by adding or omit-
ting optional actions. Thus, the derived activities of an ADL
have always had the multilevel inheritance relations between
each other. For instance, PrepareCoffee(A4) and another three
derived activities about preparing coffee: PrepareBlackCof-
fee(A1), PrepareCoffeeWithoutSugar(A2) and PrepareCoffee-
WithoutMilk(A3), have the multilevel inheritance relations as
A1 ⊂ A2 ⊂ A3 ⊂ A4.

Thus, the graph search strategy that we adopt is based on
the greedy manner. That is, if an ADL is recognized, the
central system will be notified by an alert. At the same time,
the completeness of the recognized ADL will also be verified
until all the integral actions in the corresponding intent have
been done. If the recognized ADL is one of the inherited
activities, we continue receiving observed actions from α
until the token shifts to the Infimum.

D. Prediction assessment

In local optimal concepts, there are normally more than
one predicted candidate (probable ADL) in the extent because
the observed actions belonging to an ADL are given by the
successive manner. Without an efficient assessment, redundant
predictions will be useless to make decisions for real-time
cognitive assistance. In this case, we desire to evaluate the
relevance of each predicted candidate in a local optimal
concept and choose the most relevant one as local optimal
prediction. A real-time assessment is discussed as follows.

The way to accomplish an ADL gi could be various due to
flexible execution orders, optional or repetitive actions. At the
same time, each person also has his own preference to execute
a same ADL, and there are normally a few deviations among
each execution order. Based on this hypothesis, we make use
of historical behavioral data containing the preferences of a
resident to train an accumulation binary matrix.

Normally, binary matrices used to create lattices only store
Boolean values to describe binary relations between two non-
empty sets. Therefore, some valuable historical information
beyond Boolean relations has been abandoned. The core idea
of accumulation binary matrix is to establish a series of naive
distributions about expected positions of component actions of
indexed ADLs.

We propose our assessment as follows: for each predicted
ADL gi in the extent, under the condition of executing gi, we
calculate the deviation between the actual normalized positions
in the sequence α and the accumulated expected ones. Thus,
the local optimal prediction should be the one with minimal
deviation which has the most suitable path comparing with
the historical data. Obviously, our assessment consists of two
modules: accumulation and assessment.



1) Accumulation: for each action αj in a new training item
α, a complete execution sequence of ADL gi (i.e. αj ∈ α,
α ∈ gi), we update the accumulated value at corresponding
element (gi, αj) in the binary matrix by Equation (6):

σij = σ′
ij + j (6)

where j is the position of αj in α. σ′
ij is the previous

accumulated value and σij is the newly updated one. Equation
(7) represents the same accumulation in a global view:

σij =

Nij∑
k=1

σ(ij,k) (7)

where Nij represents the occurrences of element (gi, αj)
existing in the training dataset. σ(ij,k) is the position of αj

in the k-th item.
2) Assessment: after receiving each new observed action,

we calculate the normalized position of each action αj in the
sequence α given each predicted ADL gi in the extent. The
normalized position φij of action αj executing gi is calculated
by Equation (8).

φij =
1

#αj

|α|∑
k=1

k, if αk = αj (8)

where |α| is the size of current sequence α and #αj is the
occurrences of αj in α. The condition αk = αj is necessary
to integrate all #αj times appearances of αj to calculate the
normalized position.

Equation (9) expresses the root-mean-square deviation Di

of current sequence α executing gi:

Di =

√√√√ 1

|α|
∑

∀αj∈α

(φij −
1

Nij
σij)

2 (9)

where ∀αj ∈ α restricts that the variance of each action in α
should be used to calculate the root-mean-square deviation.

Thus, a set of RMSD {D1, D2, ..., Di} is calculated by α
and by the current extent A = {g1, g2, ..., gi}. The element g ∈
A possessing the minimal RMSD value is the local optimal
prediction because of the best fitting with historical data.

IV. EXPERIMENTS

In this section, we first describe the characteristics of ex-
perimental datasets, and then evaluate the experimental results
using 10-fold cross-validation at the following criteria: time
cost (in both training and execution phase), ADLs prediction
and recognition accuracies.

A. Experimental Data

Our experimentation is based on the real dataset RDATA
captured by the sensor network in our LIARA laboratory,
the synthetic dataset DDATA derived from RDATA, and the
benchmark dataset CASAS [21]. Because of complicated in-
teractions and more multilevel inheritance ADLs, we choose
kitchen activities as our main research objects.

TABLE I
STATISTICAL INFORMATION ABOUT RDATA

Activities No. Actions
PrepareCoffee 14
PrepareCoffeeWithoutSugar 11
PrepareCoffeeWithoutMilk 11
PrepareMilk 5
PrepareSpaghetti 18
PrepareSandwich 15
PrepareSandwichWithoutMustard 11
PrepareSandwichWithoutButter 9
PrepareCereal 8
PreparingToastsAndEggs 20
PreparePudding 5
PrepareMilkTea 12

TABLE II
DATA STRUCTURE OF TRAINING ITEMS

TI Atomic Actions Activities
1 BoilWater PrepareCoffee
2 TakeCupFromCupboard PrepareCoffee
3 TakeOutCoffee PrepareCoffee
4 PutCoffeeIntoCup PrepareCoffee
5 StoreCoffee PrepareCoffee
6 PourWaterIntoCup PrepareCoffee
7 TakeOutSugar PrepareCoffee
8 AddSugarIntoCup PrepareCoffee
9 StoreSugar PrepareCoffee
10 TakeOutMilkFromRefrigerator PrepareCoffee
11 PourMilkIntoCup PrepareCoffee
12 StoreMilkInRefrigerator PrepareCoffee
13 BrewCoffee PrepareCoffee
14 PutSpoonIntoSink PrepareCoffee

The statistical information about RDATA is shown in Table
(I). There are twelve kitchen activities named in camel case
with the amount of non-redundant component actions.

Normally, the complete data structure of training data
RDATA contains four kinds of information: temporal infor-
mation (TI) indicating execution orders, sensor information
indicating topological relationships between physical entities
[11][15], recognized action and corresponding ADL. To sim-
plify our problem, we transferred the temporal information to
step counts and removed the part of sensor information. Table
(II) sketches the final data structure of our training items.

B. Evaluation

The evaluations that involve the performance of our algo-
rithm introduce in this subsection. It is worth mentioning that
all the related evaluations were carried out on a single laptop
with tech specs of Intel Core i7 Processor (2.4GHz) and 8GB
RAM, under Ubuntu 14.04.

1) Time Cost: The time costs for training different lattices
with different sizes are shown in Table III. Compared to
RDATA, DDATA has the same statistical information in size
because the lattice construction only depends on the binary
relations (i.e. lattice structure only depends on the set of
component actions of each ADL). That is also the reason why
FCA-based models could well handle the ADLs with flexible
execution orders without additional training costs.



TABLE III
TIME COST FOR TRAINING CONCEPT LATTICES

Dataset Lattice Size Time Costactivities actions concepts
RDATA 12 69 24 0.0023
DDATA 12 69 24 0.0047
CASAS 5 (120) 25 430 0.7112

We also used the benchmark dataset CASAS as reference.
Unlike our research topic, it is based on the mapping between
low-level sensor data and high-level ADLs as we mentioned
in Figure 2. The data in CASAS was captured by a series of
motion, binary and numerical sensors, and represents five main
ADLs in a smart environment. However, each ADL in CASAS
has diverse sets of component actions describing a same ADL
due to the motion sensors. In this case, each different set of
component actions was treated as a different ADL in the lattice
(i.e. 120 different ADLs derived from five ADLs, see Table
III). Once any set of actions is identified by our approach, the
affiliated ADL will be predicted and recognized as well.

2) Recognition Accuracy: The results shown in Table IV
shows the excellent performance in ADLs recognition under
the limitation of no missing values in the training dataset. To
generate DDATA, we disrupted the internal execution orders of
the training items in RDATA under the condition of following
the causal restrictions between component actions.

TABLE IV
TIME COST AND ACCURACY OF ADLS RECOGNITION

Dataset No. Items Accuracy Time Cost
RDATA 240 100% 0.0081
DDATA 96972 100% 5.1789

WSU CASAS 120 86.7% 0.0261

We evaluated RDATA and DDATA by 10-fold cross-
validation to reduce overfitting. The k-fold cross-validation
could reduce the unreliable estimate of future performance
while increasing the bias [22]. The recognition accuracy of
CASAS is better than the experimental results using incre-
mental training by the classical HMM method, but inferior to
the ones using off-line training [23].

3) Prediction Accuracy: ADLs prediction and related as-
sessment occur after each transition happened in the diagram.
Successive operations loading new observed actions into se-
quence α are called the serial stages and a local optimal
prediction will be chosen at each stage.

Figure 4 depicts the average prediction accuracies at differ-
ent stages and the trends. For RDATA and DDATA, the scopes
of valid stages are from 1 to 20, and for CASAS, the one is
from 1 to 80 (accuracy is 100% after Stage 25). Assessment
accuracies have been gradually improved when more and more
actions are being observed and loaded. Additionally, a resident
firstly has to move to the right place to carry out an ADL.
Thus, in CASAS, the prediction accuracies are better than
another two datasets at the early stages due to the fixed motion

Fig. 4. Prediction accuracies based on the RMSD at different stages.

sensors. Compared with [24], our prediction is more stable at
the early stages.

V. DISCUSSION

Summing up the results obtained in Section IV, it is possible
to conclude that our incremental approach is suitable and
efficient for real-time activity prediction and recognition in
ubiquitous computing environments.

A. Advantages

First, different from the majority of expert systems based
on scattered deductive reasoning, our FCA-based hierarchical
model provides a unified powerful deductive logic framework.
It clearly represents complicated ADLs prediction and recog-
nition as a graph search problem and spontaneously achieves
progressive deductive reasoning. Through representing ADLs
and component actions as binary relations, we could obtain
enumerable concepts consisting of shared actions (intent)
and affiliated similar activities (extent). With the successive
manner loading actions in real-time, the scope of probable
ADLs in the extent shrinks gradually and the global optimal
concept will be located at the end. All related inferences are
automatically deduced by the closure transitions in the Hasse
diagram.

Then, as an improved version of BFS, our graph search algo-
rithm has obvious advantages in efficiency and in consistency
of reasoning. Unlike classical graph traversal algorithms aban-
doning all the previous reasoning, our incremental approach
need neither to start over again nor to traverse the whole
graph to look for the local optimal concept after each intent
extension. On the premise of no effect for the final results, our
HGS algorithm continues each new round of reasoning from
previous interrupted positions. Moreover, our graph search
strategy could also distinguish multilevel inheritance ADLs.

Next, compared with the other statistical or probabilistic
methods, our FCA-based approach has fewer volume require-
ments of training data due to the data structure based on the
set and graph theories (see RDATA and DDATA statistical
information in Table III). In the training phase, the chaotic



execution orders and the repetitive actions in the new training
items are insignificant if the sets of component actions are
same as the ones existing in the context, we do not need to
rebuild models and only to update the accumulation binary
matrix for the RMSD-based assessment.

After that, real-time ADLs prediction assessment will be
triggered in each iteration looking for each local optimal
concept. Once a local optimal concept is located, the relevance
of each candidate in the extent will be evaluated to choose the
most probable ADL that may occur.

Finally, our approach has great superiority in the knowledge
reuse and self-adaptation. The trained Hasse diagram and the
accumulation binary matrix are designed as two independent
uncoupled modules. If one module has been modified, there is
no influence to another one. As a consequence, accumulation
binary matrices could also be reusable for the other scenarios.

B. Disadvantages

Our FCA-based approach works if and only if different
sets of attributes (eg. actions) could well distinguish different
objects (eg. ADLs). Besides, there exists several unnegligible
disadvantages as well. The first disadvantage refers to the loss
of precision. Classical construction methods could only build
lattices from Boolean binary relations. This restriction limits
that if we try to analyze certain numerical relations, we have
to convert them into Boolean values by losing precision. For
example, in the CASAS dataset, we converted all the positive
values of sensors into Boolean True when we described the
interactions between ubiquitous sensors network and ADLs.
Briefly, if tiny difference between numerical values in binary
relations is crucial, we need at least transfer them into the
enumerable nominal form. Even then, it is not achievable in
some extreme cases. Moreover, there are critical requirements
in correctness and completeness for the training data. Any
error in the training items will affect the overall accuracy.

The second one is about the boundary segmentation. The
current version of our approach is designed for bounded ADLs
prediction and recognition. If we would like to use it to handle
a sequence of actions containing more than one successive
activity, it is necessary to manually define boundaries for these
adjacent activities. If not, it will cause the alignment errors.

The third one is related to the assessment based on RMSD.
The natural lattice structure does not contain temporal infor-
mation about execution orders, so the bias in the assessment
due to incidental factors could not be completely avoided.

At last, as a common problem appearing in the other state-
of-the-art prototypes, unseen ADLs could not be predicted or
recognized if no corresponding training items are available in
the dataset [10].

VI. CONCLUSION

For the purpose of knowing which ADL is being done by
a resident in a smart home, in this paper, we presented our
current efforts towards real-time ADLs prediction and recog-
nition in ubiquitous computing environments. We designed
a real-time knowledge-driven approach based on FCA to

progressively analyze sequences of actions. We also proposed
an assessment evaluating the relevance of each intermediate
prediction to obtain the most probable ADL.

As mentioned earlier, our FCA-based approach has shown
great potential to detect several typical cognitive errors caused
by the deterioration of cognitive skills. Hence, in the future
works, we intend to concentrate on this issue and to extend
our approach to more complicated real-world scenario like
identifying complex parallel or interleaved activities.
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