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Abstract With the help of cutting-edge software, hardware
and communication technologies, future living environments
such as smart homes are expected to provide intelligent ser-
vices to make user experience much better than ever. Ide-
ally, indoor multi-modal interactions and ambient changes
in smart homes could be monitored using ambient intelli-
gence technology for instantaneous human behavior analy-
sis and human-centered interactions. Such quick feedbacks
are significant to the elderly and disabled people. Qualified
smart environments could greatly reduce the burdens on per-
sonal home cares by offering appropriate assistance accord-
ing to recognized human behaviors. However, due to varied
behavioral patterns and imprecise data acquisition, realiz-
ing complex human activity in real-time without controversy
over privacy is one of the biggest challenges for the scientific
community. In this paper, we propose an innovative infer-
ence engine based on Formal Concept Analysis to recognize
complex human activities, including sequential, interleaved
and concurrent patterns performed in a non-intrusive smart
home. Besides the on-the-fly recognition, our engine adopts
a loose coupling architecture that strengthens the software
robustness, reliability and knowledge reusability.
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1 Introduction

As people live longer and low birth rates all over the world,
population aging has become a worldwide crucial issue in
the recent decades [1]. When cheering for the great improve-
ment in health and longevity, we also need to calmly think
about its tremendous challenges to the social and family
aspects [2]. Elderly people usually require more long-term
home cares because of the gradually weakened physical con-
ditions, especially the aging-related disabilities. As one of
the most typical ones, cognitive disability has attracted much
attention from scientific communities [3]. According to the
recent research [4], most cognitive impairment symptoms
happened in the middle-aged and elderly population are re-
lated to the Alzheimer’s disease, which is also the most com-
mon cause of dementia. Progressively severe deterioration
in cognitive skills makes elderly people have difficulties in
living independently. Comparing with healthy people, they
tend to produce more abnormal behaviors which make nor-
mal activities become threatening as well [5]. The most di-
rect and efficient intervention is to employ family caregivers
to take care of elderly people day and night. However, it will
increase the burdens of family and lead to a significant esca-
lation in home care expenditures.

To get rid of this dilemma, smart environments, a new
paradigm of future living environments, have become a new
promising solution [6, 7]. With huge commercial prospects
and fast development of information and communication tech-
nologies, smart environments incorporate multiple cutting-
edge techniques such as ambient intelligence (AmI) [8, 9],
Internet of things (IoT) [10], social robotics [11] and human-
computer interaction [12, 13]. They try to take full advan-
tage of computer science to help elderly and disabled peo-
ple live on their own with less nursing care. Based on the
real-time analysis of indoor conditions, appropriate feed-
back such as intervention or assistance will be duly given
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out. Thus, the future living environments which rebuilt into
smart homes using AmI technique will become more and
more comfortable. They will offer a range of assisted ser-
vices due to more consideration about context awareness,
human factors and ergonomics between occupants and envi-
ronments [14].

As one of the core techniques of smart environments,
IoT could build a network of objects embedded with elec-
tronic components such as sensors, actuators or RFID tags
to monitor indoor conditions in real-time [7, 10, 15] (see
Fig. 1). These objects include home appliances, wearable
devices, household furniture, components of an apartment
(e.g. doors, windows) and the other daily commodities.

As a consequence, pervasive electronic components con-
tinuously generate enormous amounts of data describing en-
vironmental conditions (positions, movements, temperature
and pressure, etc.) and consumption (energy or resources)
[13]. Generated data constitute temporal and sequential pat-
terns which are usually heterogeneous and chaotic. With the
help of ubiquitous sensor networks, most of human behav-
iors performed in smart homes could trigger passive sen-
sor events and will be captured by specific IoT components.
Thus, it is possible to realize real-time activity monitoring as
well as behavioral pattern analysis to avoid potential threats
in their earliest stages. Moreover, for the purpose of provid-
ing appropriate assistance, smart homes should also under-
stand an occupant’s real intentions (i.e. activities willing to
do) hidden behind observable behaviors as early as possible
[16].

Fig. 1: Architecture about intelligent assistance based on a
sensor network and an expert system in smart homes.

Because of the periodicity caused by people’s habits,
the majority of behavioral patterns describing an activity
are regular and predictable by historical data [17]. A series
of cognitive assistance can be offered based on the activity
recognition and prediction given observations, namely, the
captured sensor data.

The objective of behavioral pattern analysis is to rec-
ognize ongoing activities rather than classify the completed
ones [18]. In other words, activity prediction is more es-
sential to help occupants prevent dangerous situations be-

fore they occur. Once current behavioral pattern tends to be
anomalous or threatening, we hope the smart homes could
determine whether it is necessary to implement preventive
interventions or to notice the family members, neighbors or
caregivers.

However, complex behavioral pattern analysis is always
a great challenge to smart home applications [19]. In most
cases, human behaviors are basically planned and performed
in continuous and complex ways. Compared with the behav-
ioral patterns of independent activities, the complex ones are
usually sequential without clear boundaries, sometimes even
interweaved due to personal thinking ability and advanced
planning such as interleaved or concurrent modes.

Besides, before a widespread commercialisation, the re-
liability of smart homes is another important factor [20]. As
summarized in [21], a good smart home must provide re-
liable positioning and measurement of sensor data and have
reliable algorithms for evaluating occupant’s lifestyles. Con-
sidering these requirements in reliability, our main contribu-
tion of this paper is to propose a robust activity inference
engine mining complex behavioral patterns in non-intrusive
sensor-based smart homes. The innovative inference engine
is based on formal concept analysis and could recognize on-
going activities using partially observed unreliable sensor
data from a heterogeneous sensor network. Its modeling is
an attempt to retrospect sequential patterns of historical sen-
sor data to construct a reliable case-based model. It takes
advantage of context-aware rules to prompt individuals for
well scheduling and carrying out complex activities. More-
over, the design of inference engine uses a loose coupling
architecture to strengthen the reliability in robustness and
knowledge reusability.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the related works about complex activity recog-
nition in smart environments. Section 3 introduces the pre-
liminaries of activity recognition as well as the knowledge
representation and inference by formal concept analysis. Sec-
tion 4 presents our experimental results. Section 5 discusses
the performances and emphasis the reliability of our meth-
ods. Finally, the conclusion is reported in Section 6.

2 Related Work

Because of numerous generated data and adopted ubiquitous
computing technique, data analysis, especially large-scale
data mining has become an efficient solution to handle with
AmI problems. Most of the raw data contain valuable in-
formation including regular patterns or useful cases. At the
same time, they are usually difficult to be used directly to
solve practical problems due to the lack of efficient knowl-
edge discovery and retrieval strategies. Thus, it is essential
to choose an effective representative form to index, organize
and retrieve unstructured information [15].
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With the help of knowledge representation and data min-
ing techniques, useful information can be discovered from
large-scale continuous data streams. On the one hand, dif-
ferent types of data streams need to be analyzed by suitable
approaches on the basis of varied data features. On the other
hand, different features are normally related to the different
ways of data acquisition.

For example, the vision-based one uses facilities like
cameras, webcams, kinects or social robots to capture se-
quences of images [22]. Each image is a set of pixel values.
Vision-based solutions capture more details about environ-
ments and contexts in the data streams containing high infor-
mation entropy [23]. Thus, their performances are also better
than others. Those pixel values indicate the meta-data such
as the real-time positions of monitored objects and as the
latest states of moving objects. Image processing and pattern
recognition [24, 25, 26] are common methods to handle with
pixel data streams. However, because vision-based solutions
directly acquire highly sensitive personal information, the
trade-off between privacy and excellent performances has
always aroused controversy [27]. That’s why more and more
applications of smart homes have adopted the non-intrusive
data acquisition such as sensor-based solutions.

The sensor-based one depends on the wireless sensor
network to build ubiquitous computing environments. Most
of the non-intrusive components only capture the states of
attached or embedded objects, react passive activation and
transfer numerical, binary or categorical values through wire-
less communication. All the captured data contain little per-
sonal information and generate sensor data streams. Unlike
homogeneous pixel values of vision-based data acquisition,
it is difficult to represent and process large-scale heteroge-
neous sensor data by a unified data structure. In this paper,
we focus on the sensor-based pattern analysis to exploit use-
ful behavioral patterns from historical data and to recognize
activities from real-time data.

Due to the difficulties of complex behavioral analysis in
non-intrusive smart environments, there are only a few re-
searches in this domain. Ruotsalainen et al. [28] introduced
a genetic algorithm for detecting interleaved patterns from
event sequences. The algorithm has been utilized in parti-
tioning event sequences and matching subsequences with
the specific pattern templates. Thus, this method is limited
by the low performance in generalization.

Gu et al. [29] built activity models based on Emerging
Patterns describing significant changes of itemset supports
and differences between two classes to recognize sequen-
tial, interleaved and concurrent activities. Rashidi et al. [30]
introduced an unsupervised method to discover frequent in-
teresting activity patterns and to group similar discovered
patterns. A boosted version of a hidden Markov model is
created to represent and recognize the activities and their
variations. The limitation of these methods is that they only

considered specific subsequences occurring frequently, and
ignored some important ones with imbalanced distribution
in the dataset.

Interleaved hidden Markov models were introduced to
recognize multitasked activities [31]. After a small modifi-
cation of the classical HMM model, the improved models
were able to better predict transition probabilities by record-
ing the last object observed in each activity. Hu and Yang
[32] proposed a two-level probabilistic framework for multiple-
goal recognition including concurrent and interleaved activ-
ity recognition. They used skip-chain conditional random
fields (SCCRF) and a correlation graph for modeling in-
terleaved and concurrent activities. A detailed performance
comparison of different techniques involving naive Bayes
and the variations of hidden Markov Model was given in
[33]. These methods usually have strong noise immunity.
The imperfection mainly surrounds computational difficul-
ties in the training phase. It is usually difficult to train mod-
els with a large number of parameters or large state spaces.

For the other methods, Hall et al. [34] used finite-state
automaton to decompose the total power load and distin-
guish each individual usage of appliances. Thus, interleaved
activities related to the energy consumption are indirectly
discriminated. However, it could not handle with the other
kind of activities without the usage of electrical devices.

Riboni et al. [35] proposed an unsupervised method to
recognize complex activities by exploiting the semantics of
activities, context data, and sensing devices through onto-
logical and probabilistic reasoning. Roy et al. [36] proposed
a hybrid recognition model based on the probabilistic de-
scription logic. Okeyo et al. [37] combined ontological and
temporal knowledge representation to recognize composite
activities. The ontological activity model established rela-
tionships between activities and involved background knowl-
edge. The temporal one defined correlations between con-
stituent activities of a composite activity. Saguna et al. [38]
proposed a conceptual framework for spatiotemporal context-
aware systems to infer interleaved and concurrent activities.
However, these knowledge-based methods require more ex-
tra knowledge or predefined inference rules defined by do-
main experts. Their high requirement about domain knowl-
edge makes the maintenance or extension difficult for do-
main freshmen.

A logic framework based on four-level lattice was de-
fined for plan recognition in our early studies [39]. Although
its complexity determines that it can not be widely used in
ubiquitous computing, it also prompts the research to solve
AmI issues through maturer lattice-based models. Another
interesting research introduced by Ye and Dobson [40] in-
vestigated the performance of semantic data structure called
context lattices to recognize activities in smart homes. Their
further research proposed a knowledge-driven approach for
concurrent activity recognition [41]. However, their meth-
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ods largely depend on domain knowledge, predefined logic
expressions and operations. These factors greatly reduce the
efficiency and flexibility.

Based on the above considerations, formal concept anal-
ysis (FCA) has become our first choice to represent and ex-
tract knowledge from a large volume of unstructured data
for the reason of its excellent performance [42]. It is widely
used in various domains like knowledge discovery, ontol-
ogy learning [43], semantic annotation [44], information re-
trieval and recommender system [45], to construct a knowl-
edge graph or graphical ontology for data organization, visu-
alization or mining. Similar to association rule learning, for-
mal concept analysis can fast discovers useful itemsets. Nev-
ertheless, it lacks efficient method to retrieve them. Thus, in
[5, 46, 47], FCA firstly introduced to recognize singleton ac-
tivity with a clear boundary from sensor event streams and to
detect abnormal patterns on-the-fly. The treated streams are
required to be well segmented with clear boundaries. More-
over, each sensor stream must only have one activity. These
assertions are too ideal to be satisfied in reality. Thus, in this
paper, we propose an improved algorithm based on FCA to
recognize complex behavioral patterns from continuous sen-
sor events.

3 Inference Engine for Activity Recognition

In this section, first of all, we introduce some notions about
simple and complex activities of daily living in Section 3.1.
Then, a common multilevel granularity to solve activity-
centered problems of smart environments is highlighted in
Section 3.2. And then, we apply the formal concept anal-
ysis theory to the AmI issues and explain the principles in
Section 3.3. Next, we import an innovative search algorithm
to retrieve knowledge in the FCA-based knowledge base in
Section 3.4. After that, on the basis of our previous work,
we demonstrate how to recognize complex activities on-the-
fly by our new approach in Section 3.6. Lastly, we highlight
a method called RMSD to refine the predictive activities in
Section 3.7.

3.1 Preliminaries of Activity Recognition in Smart Homes

To live independently in their own homes, elderly people
should at least be able to individually complete basic Activ-
ities of Daily Living (ADLs) [48]. ADLs refer to people’s
daily self-care activities. As a term used in healthcare, the
quality of ADLs performance has been regarded as an im-
portant measurement of one person’s functional status. It is
also the minimum requirement for living independently.

According to the comprehensive research of Lawton et
al. [49] in the behavioral assessment of elder people, ADLs
could be classified by human functionality as two types:

– Basic ADLs: simple tasks about functional mobility and
physical self-maintaining activities such as toilet, feed-
ing, dressing, grooming, ambulation and bathing, etc.

– Instrumental ADLs: complex tasks that are not neces-
sary, but more complicated than basic ADLs which need
more thinking, planning and interactions. For instance,
telephone, food preparation, housekeeping, laundry, re-
sponsibility for own medication, etc.

Basic ADLs are usually the short-term behaviors with
short execution times. Moreover, they seem to be indepen-
dent and not collaborative with each other.

Furthermore, two or more instrumental activities could
generate more complex behavioral patterns. These patterns
with collaborative interactions are more close to the real sce-
narios [19]. In the following definitions, we suppose that
each mode is taken by only one occupant. Similar defini-
tions have also been proposed in the other AmI researches
[32, 50, 51].

– Sequential ADLs: activities are performed one after an-
other in a continuous and sequential mode without in-
terweaving execution (see the execution of behaviors ax,
by belonging to two ADLs a,b in Fig. 2). For example,
an occupant prepared toasts after preparing a cup of cof-
fee. Moreover, each ADL is independent and there is no
shared behavior between any two successive ADLs.

Fig. 2: Sequential mode of ADLs execution

– Interleaved ADLs: the performance of ADLs interweaves
together with pauses. As shown in Fig. 3, an occupant
will temporally suspend the current ongoing ADL and
turn to do another one. After a while, the suspended
ADL will be done sooner or later. In reality, when an
ongoing ADL needs to wait for the processing or results,
the occupant usually does another ADL during the wait-
ing time (e.g. during the waiting of cooking spaghetti,
the occupant turned to prepare a cup of tea). Behaviors
belonging to different ADLs are frequently scheduled
among the execution processes.

Fig. 3: Interleaved mode of ADLs execution
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– Concurrent ADLs: in this mode, more than one activ-
ity is carried out simultaneously in a period of time. Al-
though it is similar to the interleaved ones, the biggest
difference is that different behaviors could be done at the
same time (see Fig. 4). Because of no conflict, a person
could telephone by mobile phone while cooking.

Fig. 4: Concurrent mode of ADLs execution

The issue of ADLs recognition is a very active topic in
the application of ambient intelligence [13, 52, 53]. Activity
tracking and recognition are also the most desirable require-
ment of family caregivers for smart home technology [54].
The issue refers to the long-term behavioral intention recog-
nition from various sequential patterns which are constituted
by temporal behavior-related data. Given a sequence of ob-
servations, the ADLs recognition task is to associate activi-
ties with part of observations.

For the reason of varied living habits, personal prefer-
ences or the other physical, mental and culture factors [55],
an ADL could have multiple behavioral patterns to describe
itself. Even if having almost the same participant actions,
two patterns could be totally dissimilar because of different
execution orders, recurrent or optional actions.

3.2 Multilevel Granularity in Smart Environments

Figure 6 depicts a common multilevel granularity to solve
activity-centered problems of smart environments [46, 56,
57]. Three levels of granularity represent different kinds of
behavioral elements. The fine-grained components are lo-
cated at lower levels in the structure and the coarse-grained
ones are positioned at higher levels. Each coarse-grained su-
per component is composed of one or more fine-grained sub-
components.

The objective of ADLs recognition is to identify the most
probable coarse-grained ADLs generating the observed fine-
grained subcomponents. Normally, an ADL is composed of
more than one observable action. In other words, several
short-term targets have joined together to form a long-term
intention. An action is atomic, which indicates a meaningful
element describing a short-term target. Additionally, each
action is measured by one or more sensor event. Thus, in the
case of ADLs recognition, the coarse-grained target classes
should be the high-level ADLs and the fine-grained features
could be either sensor events or actions.

3.3 Knowledge Representation and Modeling

Formal concept analysis (FCA) is a mathematical theory
that derives concept hierarchies from a given dataset. It aims
at firstly clustering similar targets classes sharing the same
ontological features, and then indexing these clusters by a
structural preorder called partial order. Correlations between
the individuals and features could be represented as homo-
geneous binary relations. In reality, binary relations describ-
ing two sets of different things widely exist in most of the
scene 1. When we use FCA to construct knowledge base,
FCA requires choosing suitable target classes and correspond-
ing features for modeling due to the restriction of binary re-
lations.

After the brief introduction about FCA, in the following
words, FCA components (including formal context, concept-
forming operations, formal concept, formal lattice and Hasse
diagram) will be presented as well as their roles in modeling
and the constructions of the inference engine.

3.3.1 Knowledge Storage by Formal Context

In order to construct the inference engine by FCA, firstly,
unstructured knowledge must be stored in a specific data
structure called formal context for easier utilization and in-
dexation in the future inferences.

A formal context K is the mathematical abstraction of a
scene. It aims to transfer unstructured information into struc-
tured data. It could be represented as a triplet K(G,M, I)
that consists of two disjoint sets G and M. Set I represents
their Cartesian products as binary relations, which defines
the different issues of ADLs recognition. The elements of G
representing coarse-grained target classes are called objects,
and the elements of M representing fine-grained features are
called attributes. Attributes are the descriptors of objects. In
order to express that object g is related with attribute m, we
write gIm [58].

The triple K(G,M, I) could be represented and visual-
ized as a |G|× |M| matrix. The matrix representing context
K provides an opportunity to encode unstructured or hetero-
geneous information to a machine-recognizable data struc-
ture. With the help of formal context, FCA can further dis-
cover the dependencies between target classes G and feature
variables M.

Application 1: In our case, both observable sensor events
and atomic actions could be treated as the fine-grained fea-
tures of target classes G. To facilitate the following introduc-
tion, we suppose that the fine-grained features M indicate
the observed sensor events, then binary relations I define the
issue as activity recognition in the stream of sensor events.

1 For example, in linguistics, each subject establishes a binary rela-
tion with its object (or predictive) by the (linking) verb.
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PrepareHotChocolate g1 × × × × ×
PrepareMilkTea g2 × × × × ×
PrepareSpaghetti g3 × × × ×
PrepareCaffèMocha g4 × × × × ×
PrepareCereals g5 × × × × ×
PrepareToast g6 × × ×
PrepareSandwich g7 × × ×

Fig. 5: Matrix representing the activities gi carried out in the kitchen and their atomic actions mx.

Fig. 6: Multilevel granularity in smart environments

Considering the architecture in Fig. 6, ∀g ∈ G repre-
sents a target activity, and ∀m ∈ M could be an indexed
sensor event or atomic action. Given a concrete example,
there are seven activities about preparing breakfast: Prepare-
HotChocolate (g1), PrepareMilkTea (g2), PrepareSpaghetti
(g3), PrepareCaffèMocha (g4), PrepareCereals (g5), Prepare-
Toast (g6) and PrepareSandwich (g7). There are also twelve
actions shared among these activities: boil water (a), pre-
pare tableware (b), add cocoa powder (c), pour cereals (d),
take out breads (e), take out teabags ( f ), take out spaghetti
(g), add sugar (h), add milk (i), add sauce ( j), use toaster
(k) and use microwave oven (l). If a sensor event or action m
is in the sequence describing activity g, then a cross is filled
in row g and column m. For example, α ={b≺ b≺ d ≺ c≺
d ≺ i≺ l} is a sequence describing g5, then five crosses are
automatically filled in row g5 (see Fig. 5).

3.3.2 Similarity Maximization by Concept-Forming
Operations

In the conventional clustering methods, similarity metrics
are essential to generate clusters [59]. Likewise, there also
exists the metrics in FCA to cluster similar target classes
sharing the same ontological features.

To exploit useful information from the FCA matrix and
maximize their similarities, a pair of closure operations, so-

called the concept-forming operators is induced to discover
associations.

For a subset of objects G1 ⊆ G, we define

G′1 := {m ∈M | for all g ∈ G1, gIm} (1)

as an operation to find out the common features G′1 ⊆ M
shared by all the objects in G1. Likewise, for M1 ⊆ M, we
define

M′1 := {g ∈ G | for all m ∈M1, gIm} (2)

as another operation to find out all the objects M′1 ⊆ G shar-
ing the common features M1 at the same time [58].

Their combination could maximize the dependency and
similarity in a pattern itemset and make it a stable closure,
which is also a cluster.

Application 2: M′1 indicates all the possible activities shar-
ing the common features M1. In other words, if observations
M1 are partially observed data, M′1 reveals all the possible
activities given those observations.

For instance, if actions {bc} are detected by the sensor
network, according to {bc}′ = {g1g4g5}, the most possi-
ble ongoing activities are g1,g4 and g5. However, itemset
{bc,g1g4g5} is not a stable cluster due to {g1g4g5}′= {bci}.

3.3.3 Cluster Representation by Formal Concept

After the definition of similarity metrics, FCA can cluster
similar target classes in ontology for knowledge discovery.

A concept is a pair (G1,M1) where G′1 = M1, M′1 = G1.
G1 and M1 are called the extent and the intent of a concept
[58]. Because of (G′1)

′ = (M1)
′ = G1, each concept is a clo-

sure under the concept-forming operations. B(G,M, I) de-
notes a universe containing all the concepts of a context K.

Concepts are the smallest FCA units having discovered
knowledge. Each concept is a cluster corresponding to an



Complex Behavioral Pattern Mining in Non-intrusive Sensor-based Smart Homes using an Intelligent Activity Inference Engine 7

{∅,abcdefghijkl}

{g1g2g3g4g5g6g7,b}

{g5,bcdil} {g1,bchil} {g4,abchi} {g2,abfhi}

{g1g5,bcil} {g1g4,bchi} {g2g4,abhi} {g3,abgj}

{g1g4g5,bci} {g1g2g4,bhi} {g7,bej} {g6,bek}

{g1g2g4g5,bi} {g2g3g4,ab} {g3g7,bj} {g6g7,be}

1

2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18

Fig. 7: Hasse diagram of Matrix in Fig. 5

inference. Its intent refers to all the observable features indi-
cating the centroid of cluster, and the extent refers to all the
similar objects sharing the intent M1. The properties of clo-
sure ensure that the internal ontological similarity of cluster
between the extent and intent is maximized.

Application 3: Each concept clusters similar activities based
on the shared sensor events or actions in the intent. Further-
more, if the observed data belong to the intent, the elements
in the extent indicate all the possible ongoing activities given
those observations.

{ g1g4g5︸ ︷︷ ︸
predictions

,

observations︷︸︸︷
bci } (3)

As shown in Equation (3), no matter in which order the
data are captured by a sensor network, if actions {bci} are
observed, the most probable prediction about the ongoing
activity will be chosen among g1,g4 and g5.

3.3.4 Cluster Indexation by Formal Concept Lattice

As of now, similar objects were successfully clustered by
different centroids (i.e. common features). Next, FCA will
order all the discovered clusters by a structural preorder in
order theory. The objective is to index and retrieve all those
clusters efficiently for constructing a graph-based knowl-
edge base.

A lattice (B,⪯) is an ordered version of B(G,M, I). All
the concepts in B are ordered by a predefined partially or-
dered symbol ⪯ indicating hierarchical relations between
concepts.

Suppose (G1,M1) and (G2,M2) are two concepts of B,
(G1,M1) is called the subconcept of (G2,M2) if either G1 ⊆
G2 or M2⊆M1, written as (G1,M1)⪯ (G2,M2). The symbol
⪯ is named as the hierarchical order. Meanwhile, (G2,M2)

is the super concept of (G1,M1). The construction of lattice
is a process that discovers all the concepts of a context K
by the concept-forming operations, and orders them by the
order. It is worth pointing out that the subconcept and the
super concept of a concept are not unique in B.

Application 4: Suppose concepts, {g1g5,bcil}, {g1g4g5,bci}
and {g1g2g4g5,bi}, were discovered from the matrix in Fig.
5. As shown in Equation (4), the last two concepts are the
super concepts of the first one.

{g1g5,bcil} ⪯ {g1g4g5,bci} ⪯ {g1g2g4g5,bi} (4)

The relations among inferences are established by the
hierarchical order. Moreover, the prediction about the most
possible ongoing activities frequently changes according to
different observations in different stages.

3.3.5 Knowledge Base Visualization by Hasse Diagram

In mathematics, a Hasse diagram is a graph depicting a fi-
nite partially ordered set. In our case, it is a visualization of
lattice (B,⪯) representing concepts as nodes (see Figure 7).

There are two special nodes in a Hasse diagram: the top-
most one {G,∅} 2 named Supremum and the lowermost one
{∅,M} named Infimum. Nodes are connected with edges

2 The Supremum {G,b} in Fig.7 is a special case because all the
activities in G have interactions with action b.
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named Galois connection which denotes the partial order ⪯
between nodes [58]. A Hasse diagram manages a knowledge
base through its graph structure. For this reason, in order to
manage knowledge information like unstructured behavioral
patterns, first of all, the topic-related target classes and the
feature variables are extracted from unstructured patterns.
And then, the correlations between two sets of variables are
maximized by concept-forming operations. After that, simi-
lar target classes are clustered by different centroids. At last,
all the clusters are indexed by means of the partial order.
Once the knowledge base is built, the next step is about to
design efficient algorithms to incrementally retrieve specific
behavioral patterns from the FCA-based graphical knowl-
edge base.

Application 5: As can be seen from Fig. 7, concepts are or-
ganized by different levels. From a higher level to a lower
one, the amount of observation increases and the scope of
possible activities shrinks. Using successively observed data
to incrementally infer ongoing activity is the core idea of the
inference engine.

3.4 Inference Process

In the following words, we present an innovative search al-
gorithm to retrieve knowledge in the knowledge base.

3.4.1 Principle of Real-time Knowledge Inferences

As summarized earlier, all the inferences about the possi-
ble ongoing activities given partial observations are encap-
sulated in the nodes of the hierarchical lattice. Thus, as an
expert system for behavioral pattern recognition, the FCA-
based solution is to use efficient algorithms to retrieve useful
patterns in the graphical knowledge base using sequential
observations.

Most of the graph search algorithms must traverse the
whole graph to locate targets every time. When new obser-
vations are captured, they could not recall or continue from
the last interrupted position and have to start over again for
searching updated α . For these reasons, we propose a new
graph search algorithm to locate target concepts incremen-
tally in the FCA-based models. On one hand, the new algo-
rithm improves the search efficiency. On the other hand, it
also maintains the consistency of reasoning.

Suppose that a sequence α is an ordered list of observed
data, denoted as α = {α1 ≺ α2 ≺ ... ≺ αm}, where α j ≺
α j+1 means α j occurs before α j+1. Besides, we define a
token to locate the local optimal concept having the smallest
intent in size containing the observations in α . The reason
behind such location is to avoid the loss of predictions.

The transition of token in the diagram is the incremental
inference process caused by the extension of observed data.

In a Hasse diagram, higher-level concepts have smaller in-
tents due to less observed data. Thus, the topmost concept
containing α is the local optimal one. This hypothesis is de-
scribed in Equation (5) as follows:

∀M1 ⊇α,Tb ⊆M1 =⇒ (G1,M1)⪯ (TA,Tb) and G1 ⊆ TA (5)

where Tb is the smallest superset of α and owned by the
topmost concept (TA,Tb). For example, in Figure 7, if α =

{b ≺ i}, then node 2 {g1g2g4g5,bi} is the topmost concept
we are looking for. If we choose another one (e.g. node 6
{g1g4g5,bci}) instead of the topmost one, several predic-
tions will be missing (e.g. {g1g2g4g5}−{g1g4g5} = {g2})
and could never be found in the following searches.

3.4.2 Knowledge Retrieval

Breadth-first search (BFS) is one of the most common graph
search algorithms. The main idea is to explore all the neigh-
bor nodes in the same level before moving to the next level.
Because of successively extended α , in our case, BFS is
more efficient than another one called depth-first search (DFS)
and chosen as the base of our new algorithm.

We propose a new half-duplex graph search algorithm
(HDGS) to locate each local optimal concept for succes-
sively extended α . As can be seen from the name, HDGS
consists of two directions search. Firstly, the top-down search
locates the first discovered concept containing α . And then,
starting from this concept, the bottom up search turns back
along the hierarchical order and looks for the topmost con-
cept containing α . More details about the HDGS algorithm
are sketched in Algorithm 1 and 2.

Algorithm 1: Top-down search of HDGS algo-
rithm

Data: start position sp, sequence α .
Result: first met super concept containing α .

1 begin
2 fifo← node[sp]
3 while fifo do
4 if fifo[0] not visited then
5 mark as visited
6 if α ⊆ fifo[0].intent then
7 return fifo[0]
8 else
9 add fifo[0].successors into fifo

10 remove fifo[0] from fifo
11 end
12 end

In Pseudo-code (2), we need to pay attention to Line (12)
which seeks the topmost concept having the minimal cardi-
nality of intent containing α . Due to Equation (5), the local
optimal concept has smaller cardinality than the other ones.
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Algorithm 2: Bottom up search of HDGS algo-
rithm

Data: start position sp, set α .
Result: topmost super concept containing α .

1 begin
2 fifo← node[sp].predecessors
3 S← ∅
4 while fifo do
5 if fifo[0] not visited then
6 mark as visited
7 if α ⊆ fifo[0].intent then
8 add fifo[0].predecessors into fifo
9 S← S ∪ fifo[0]

10 remove fifo[0] from fifo
11 end
12 return argmin

s∈S
(| s.intents |)

13 end

Table 1: Example of simple ADLs recognition

Round
Observed Located Predictive

Data α Topmost Concept Activities

1 {b}
node 1

g1g2g3g4g5g6g7{g1g2g3g4g5g6g7,b}

2 {bc}
node 1 ↷ node 6

g1g4g5{g1g4g5,bci}

3 {bcb}
node 6

g1g4g5{g1g4g5,bci}

4 {bcbh}
node 6 ↷ node 11

g1g4{g1g4,bchi}

5 {bcbhi}
node 11

g1g4{g1g4,bchi}

6 {bcbhih}
node 11

g1g4{g1g4,bchi}

7 {bcbhihl}
node 11 ↷ node 15

g1{g1,bchil}

3.5 Simple ADLs Recognition

The simple ADLs recognition is a process continuing to lo-
cate local optimal concepts given successively extended α .
For instance, α = {b≺ c≺ b≺ h≺ i≺ h≺ l}, Table. 1 is the
illustration of recognition process. The symbol ↷ indicates
the transition of token.

Beyond the issue of locating local optimal concepts, we
also need to consider another tough issue about multilevel
inheritance. It is a very common situation in AmI context
due to diverse lifestyles and personal habits. Besides the
flexible execution orders, an activity could also be accom-
plished by alternative ways like adding or omitting optional
events [5, 56]. For instance, PrepareCoffee(g4) and another
three derived activities about preparing coffee: PrepareBlack-
Coffee(g1), PrepareCoffeeWithoutMilk(g2) and PrepareCof-
feeWithoutSugar(g3), have the multilevel inheritance rela-
tions as g1 ⊂ g2,g3 ⊂ g4.

Therefore, the retrieval strategy that we adopted is based
on the greedy manner. That is, if an activity is recognized,

its completeness will also be verified until all the necessary
events in the intent have been done. If it belongs to one of
the inherited activities, we continue adding observed data
into α until token t shifts to the Infimum {∅,M}, which
means all probable activities are recognized in the previous
extensions.

3.6 Complex ADLs Recognition

Compared with the single ADLs recognition, the complex
one refers to distinguish mixed patterns belonging to differ-
ent activities.

As mentioned, each node of Hasse diagram is a cluster
regrouping ontological-similar objects that shared common
features. For any activity, no matter how varied its execu-
tion orders are among sensor events, the set of correspond-
ing patterns are normally in the same node in the Hasse
diagram due to the FCA-clustering. Furthermore, a behav-
ioral pattern could derive many inherited patterns represent-
ing as adjoining nodes by adding or refining optional sensor
events. Thus, a node representing similar activities and its
leaf nodes representing the inherited nodes define a larger
group of clusters having the similarly ontological relations
among internal activities.

If an incoming data is excluded by such a cluster, it
means that the data has strong ontological differences with
internal activities. As a result, the incoming data is classi-
fied as an outlier of the current plan which is being executed
and has to be put into another one. The new one starts a new
search with a new token.

The principle of deciding whether an observed data is
necessary to be excluded or not by the current plan is de-
termined by the diagram. Suppose that a node (G1,M1) is
located by the token, the set of relevant data Re given a tar-
get class g is obtained by Equation (6).

Re =
⋃
∀g∈G1

g′ (6)

where g′ is the concept-forming operation shown in Equa-
tion (1). All the other data, no matter indexed or not by the
lattice, will be classified as the outliers of the current plan
because the Infimum is immediately located by the token.
Once an outlier is detected, a provisional boundary will be
marked and a new plan for caching will be created at the
same time. The search of the current plan will also rollback
from the Infimum to the previous position.

Suppose α = {b ≺ e ≺ b ≺ c ≺ i ≺ b ≺ l ≺ g ≺ k ≺ h}
indicating interleaved activities PrepareHotChocolate (g1)
and PrepareToast (g6). There is also an unreliable data g
(take out spaghetti). Table 2 depicts the complex ADLs recog-
nition process. The symbol ⟳In f imum indicates the rollback
operation from the Infimum.
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Table 2: Example of complex ADLs recognition

Round
Observed Located Predictive

Data α Topmost Concept Activities

1 {b}
node 1

g1g2g3g4g5g6g7{g1g2g3g4g5g6g7,b}

2 {be}
node 1 ↷ node 5

g6g7{g6g7,be}

3 {beb}
node 5

g6g7{g6g7,be}

4 {bebc}

node 5 ⟳In f imum
g6g7{g6g7,be}

node 6
g1g4g5{g1g4g5,bci}

5 {bebci}

node 5 ⟳In f imum
g6g7{g6g7,be}

node 6
g1g4g5{g1g4g5,bci}

6 {bebcib}

node 5
g6g7{g6g7,be}

node 6
g1g4g5{g1g4g5,bci}

7 {bebcibl}

node 5 ⟳In f imum
g6g7{g6g7,be}

node 6 ↷ node 10
g1g5{g1g5,bcil}

8 {bebciblg}

node 5 ⟳In f imum
g6g7{g6g7,be}

node 10 ⟳In f imum
g1g5{g1g5,bcil}

node 13
g3{g3,abgj}

9 {bebciblgk}

node 5 ↷ node 9
g6{g6,bek}

node 10 ⟳In f imum
g1g5{g1g5,bcil}

node 13 ⟳In f imum
g3{g3,abgj}

10 {bebciblgkh}

node 9
g6{g6,bek}

node 10 ↷ node 15
g1{g1,bcilh}

node 13 ⟳In f imum
g3{g3,abgj}

Fig. 8: Interweaving plans

At round 4, when c is observed, {bebc} is excluded by
the current plan because no subconcept of node 5 contains
these observations except the Infimum. Thus, a new plan
is created to cache c and launches a concurrent search. At
round 8, because g is excluded by all the existing plans. A
new concurrent one is created at that moment to cache g.
Activities g6 and g1 are finally recognized at round 9 and
10, because their sizes of extent are equals to 1 and all the
required observations in the intents are observed.

Figure 8 illustrates the interweaving situation. There are
totally three plans Pi (i ∈ {0,1,2}) in the figure. P0 is the
initial plan. P1 and P2 are created when observed data is ir-
relevant to all the existing plan. Squares indicate two states
of observed data: the black ones indicate the observed data
is relevant to the patterns in the present Pi (i.e. hit), and the
hollow ones indicate the data is irrelevant (i.e. miss). For an
incoming data, it could trigger three possible states:

– strictly belongs to one plan: the observed data belongs
to a unique plan. For example, R1, R2, R3, R4, R5, R7,
R8, R9 and R10 in Fig. 8.

– belongs to more than one plan: it always happens to con-
current ADLs. For example, R6 in Fig. 8.

– belongs to none of the existing plans: In sequential ADLs,
it is the moment triggering the boundary detection. In
interleaved ADLs, the occupant may start to do another
activity or an irrelevant action, or the system may receive
an unreliable data. For example, R4 and R8 in Fig. 8.

At the end of the data stream, a completeness check will
verify all the existing plans. There are two objectives: first of
all, the amount of predictive activities will be checked. The
plan having too many predictive activities will be abandoned
due to ambiguity. Otherwise, a further check will verify the
completeness of each activity calculated by Equation 7.

Ci =
|g′i∩α|
|g′i|

and gi ∈ G (7)

where |g′i∩α| indicates the amount of observed data and |g′i|
indicates the required one. An activity having low complete-
ness will be abandoned. In Table 2, activity g3 was finally
abandoned due to low completeness, and the cached data g
was identified as an unreliable data.

3.7 Inference Assessment

Because of few observed data, a local optimal concept usu-
ally has more than one candidate in its extent, which means
that there will be more than one prediction. Without an ef-
ficient assessment, redundant predictions will be ambiguous
and useless to make decisions for real-time assistance. In
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this case, we desire to evaluate the relevance of each predic-
tion in a local optimal concept and choose the most relevant
one as the local optimal prediction.

As mentioned in the previous sections, an ADL gi could
be accomplished by alternative patterns because of differ-
ent personal preferences. Furthermore, these derived pat-
terns reflect on flexible execution orders, repetitive events,
adding or omitting optional events, etc. At the same time,
everyone also has his own relatively stable preference to ex-
ecute an ADL. Namely, for the same occupant executing an
ADL, there are only a few deviations among each execution.
Based on this hypothesis, we take advantage of historical
patterns containing the preferences of occupants to generate
a knowledge database called accumulated matrix. For each
event, we calculate its expectant position appearing in each
ADL to establish a series of naive distributions.

To measure the context similarities between historical
patterns and current incomplete ongoing ADL, average de-
viations are calculated using Root-Mean-Square Deviation
(RMSD). It makes a quantitative comparison as an assess-
ment to estimate how well the current sequence fits histor-
ical data. A lower RMSD score indicates that a prediction
is more accurate due to excellent fitting with historical pat-
terns.

We propose our assessment as follows: for each candi-
date gi in the extent, under the condition of executing gi, we
calculate the deviation between actual average positions in
α and the accumulated ones in the matrix. Thus, the local
optimal prediction should be the one with minimal devia-
tion which has the best fitting in comparison with historical
data. Obviously, our assessment consists of two modules:
accumulation and evaluation.

3.7.1 Accumulation

For each event α j in a training item α , a complete sequence
of events of ADL gi (i.e. α j ∈ α , α ∈ gi), we update the
accumulated value of corresponding element (gi,α j) in the
accumulated matrix by Equation (8):

σi j = σ
′
i j + j (8)

where j is the position of α j in α . σ ′i j is the previous accu-
mulated value and σi j is the newly updated one. Equation (9)
represents the same accumulation in another global view:

σi j =
Ni j

∑
k=1

σ(i j,k) (9)

where Ni j represents the occurrences of element (gi,α j) ex-
isting in the whole training dataset. σ(i j,k) is the position of
α j in the k-th training item describing ADL gi.

3.7.2 Evaluation

When an incoming event α j was observed, first of all, we
calculate its average position ϕ j in current sequence α . It is
calculated by Equation (10).

ϕ j =
1

#α j

|α|

∑
k=1

k, if αk = α j (10)

where |α| is the size of current sequence α , and #α j is the
occurrences of α j in α . The condition αk = α j is necessary
to integrate #α j discrete positions of α j.

And then, for each candidate gi, we calculate the devia-
tion of α given gi. Equation (11) expresses the root-mean-
square deviation Di of current sequence α executing gi:

Di =

√
1
|α| ∑

∀α j∈α

(ϕ j−
1

Ni j
σi j)

2 (11)

where σi j/Ni j is the expectant position obtained from accu-
mulated matrix.

Thus, RMSD scores {D1,D2, ...,Di} of candidates in the
current extent G1 = {g1,g2, ...,gi} were calculated. The ele-
ment gi having the minimal RMSD value is the local optimal
prediction because of the best fitting with historical patterns.

4 Experiments

The performances of inference engine are tested using two
datasets created in two smart environments, LIARA smart
home and CASAS testbed. The common classification met-
rics, F-measure and accuracy [60, 61], are used to evaluate
the performance of activity recognition. All the experiments
are carried out on the computer with tech specs of Intel Core
i7 Processor 2.4GHz and 8GB RAM, under Ubuntu 16.04.

4.1 LIARA Smart Home

LIARA smart home is a prototype of future living envi-
ronments which concentrates the innovation solutions sur-
rounding smart environments based on the ambient intelli-
gence to provide real-time cognitive assistance for the dis-
abled or elderly people. It consists of various sensors, ac-
tuators, passive RFID tags, tablets and wearable devices to
monitor indoor environmental changes caused by human be-
haviors in a non-intrusive way.

Figure. 9 shows the prototypical design of LIARA smart
home. Objects in the figure are embedded with measurable
electrical components. For instance, infrared, light sensors
and RFID antennas have been installed on the walls. The
oven in the kitchen zone is monitored and controlled by a
built-in micro computer and temperature sensors. A tablet is
also embedded on the refrigerator. The water consumption
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Fig. 9: Sensor layout of the LIARA smart home.

is measured by water sensors, and the power consumption
is recorded by a power analyzer located at the main elec-
trical panel. The open and close states of cabinets could be
detected by binary sensors. Pressure mats are placed in the
bathroom to trace occupants’ movements. Besides, passive
RFID tags are attached on all the other daily commodities to
track their spatial positions.

Using the infrastructure above, we created a dataset in
order to recognize complex activities given atomic actions.
The sequences of actions are generated from our previous
research: the passive RFID signal parsing [62] can identify
the usage of items and the electrical devices identification
[63] can identify the usage of appliances. To create train-
ing and test data, first of all, one participant performed each
activity twenty times, and then, he was allowed to freely per-
form activities in sequential, interweaving or parallel ways.
Due to complicated scenarios and much more interactions
with appliances and food ingredients, we choose instrumen-
tal kitchen activities as our research objects. Twelve activi-
ties are described by sequentially observed actions (see Ta-
ble 4). As shown in Table. 3, LIARA data has three impor-
tant fields indicating the date and time of the triggering mo-
ment: timestamps, recognized atomic actions and the corre-
sponding activity.

In order to test the performance under large scale data,
based on the real data, we generated numerous synthetic
data having more varied patterns. Furthermore, datasets were
randomly divided into 10 subsets, and such division was re-
peated 10 times. Each time, one subset was chosen as the
test set and the other 9 subsets were put together to form a
training set. This approach is called 10-fold cross-validation.

The objective of 10-fold cross-validation is to evaluate
the capacity about generalization, a well-known issue in ma-
chine learning [64]. Sometimes, a model could receive ex-
cellent evaluations on the data existing in the training set.
However, once the test data has not been seen before, the
classification result may break down. As an effective ap-
proach, cross-validation could indicate the performance of

Table 3: Data structure of LIARA training items

Timestamps Atomic Actions Activities
1 BoilWater PrepareCoffee
2 TakeCupFromCupboard PrepareCoffee
3 TakeOutCoffeePowder PrepareCoffee
4 PutCoffeePowderIntoCup PrepareCoffee
5 StoreCoffeePowder PrepareCoffee
6 PourWaterIntoCup PrepareCoffee
7 TakeOutSugar PrepareCoffee
8 AddSugarIntoCup PrepareCoffee
9 StoreSugar PrepareCoffee
10 TakeOutMilkFromRefrigerator PrepareCoffee
11 PourMilkIntoCup PrepareCoffee
12 StoreMilkInRefrigerator PrepareCoffee
13 BrewCoffee PrepareCoffee
14 PutSpoonIntoSink PrepareCoffee

Table 4: Statistical information and F-measure results of
LIARA dataset

Activities NO. Actions F-measure
PrepareSandwichWithoutMustard 11 0.947
PrepareCoffeeWithoutSugar 11 0.947
PrepareCereals 8 1.000
PrepareMilkTea 12 1.000
PreparePudding 5 1.000
PrepareToastsEggs 20 1.000
PrepareMilk 5 0.952
PrepareSandwichWithoutButter 9 0.869
PrepareSpaghetti 18 1.000
PrepareCoffee 14 0.976
PrepareSandwich 15 0.902
PrepareCoffeeWithoutMilk 11 0.806
Overall F1 score - 0.954
Overall accuracy - 0.985

built model when it is asked to make a prediction on the
data that is not used to create the model. With its help, each
pattern in the dataset was removed at least once from the
training sets.

In Table. 4, statistical information and F-measure results
using FCA-based inference engine are given out. Activities
without multilevel inheritance relations have better recog-
nition accuracies in the complex mode. This is because ac-
tivities with multilevel inheritance relations are easier to be
affected by unreliable data and recognized as one of their
similar derivations.

4.2 CASAS Smart Apartment

CASAS smart apartment is designed and constructed by the
Center for Advanced Studies in Adaptive Systems of Wash-
ington State University. Its benchmark datasets3 represent
sensor events collected in a smart apartment testbed [19].
In the experiment, we compare our results of Kyoto-3 in-

3 available at http://ailab.wsu.edu/casas/datasets/
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Fig. 10: Sensor layout of the CASAS intelligent apartment.

Table 5: Comparison of accuracies of CASAS dataset

Classes Naive Bayes [33] HMM [19] FCA-based
ac1 50% 58% 100%
ac2 62% 78% 100%
ac3 27% 43% 60%
ac4 39% 46% 95%
ac5 78% 80% 95%
ac6 83% 82% 100%
ac7 89% 81% 100%
ac8 57% 67% 100%

terweaved ADL activities dataset with the other methods in
the literature. The CASAS dataset contains the patterns of
sequential and interleaved activities. As shown in Fig. 10,
the whole apartment, including the bedrooms, a bathroom, a
kitchen and a living room, is deployed full of heterogeneous
sensors to capture various environmental states.

Instead of using passive RFID tags, the CASAS labo-
ratory directly uses motion sensors to track an occupant’
scopes of activities. The data in the sequences are the raw
sensor events. Besides, the CASAS smart apartment also in-
cludes temperature sensors, light controllers and a variety
of item sensors detecting the usages and interactions of at-
tached objects by individuals. Moreover, customer-built ana-
log sensors monitor the usage of hot water, cold water and
stove burner. The phone usage is captured by Asterisk soft-
ware and the states of doors and cabinets are captured by
contact switch sensors. Pressure sensors monitor the usage
of key items such as medicine container, cooking pot and
phone book [30].

There are twenty participants performing eight basic and
instrumental activities in the apartment. First of all, each ac-
tivity was performed separately, and then these participants
are asked to perform the entire set of eight activities again
in any order, interweaving and performing tasks in parallel
if desired. Eight activities were involved: fill medication dis-
penser (ac1), watch DVD (ac2), water plants (ac3), answer
the phone (ac4), prepare birthday card (ac5), prepare soup
(ac6), clean (ac7), and choose outfit (ac8). Each sensor read-
ing is tagged with the timestamps, sensor id and its value.

Fig. 11: Recognition accuracy of different methods on the
CASAS Kyoto-3 dataset

In Table. 5, we compared the recognition accuracy with
different methods [19, 33]. In Fig. 11, our method achieves
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Table 6: Comparison of F-measure of CASAS dataset

Classes HMM [19] MLN (supervised) [35] FCA-based
ac1 0.656 0.803 1.000
ac2 0.862 0.882 1.000
ac3 0.285 0.740 0.750
ac4 0.589 0.688 0.973
ac5 0.828 0.807 0.974
ac6 0.826 0.873 1.000
ac7 0.881 0.781 1.000
ac8 0.673 0.904 1.000
avg 0.700 0.810 0.962

the highest accuracy (93.75%) among naive Bayes (66.08%)
and HMM (71%) [33]. In Table. 6, we compared the perfor-
mance of our method with another two methods described
in [19, 35] by F-measure. Complex behavioral patterns are
classified as eight classes (activities). From these compar-
isons, we could see that our method outperforms in each
recognition case.

For the time complexities in both training and test phases,
we give out the statistical information in Table. 7. The train-
ing phase includes sequential pattern extraction, formal lat-
tice construction and historical data accumulation. While
handling with LIARA dataset, we could see that the training
and testing times are both very low. Compared with LIARA
dataset, CASAS data has much fewer training items, but the
training time is much longer than the LIARA one. The rea-
son is that the number of target classes greatly affect the
number of clusters. The augmentation of clusters also in-
creases the complexity of searching in the Hasse diagram.
For CASAS dataset, every activity was performed by dif-
ferent actors and each activity having the same name must
distribute different class labels as the variations of the origi-
nal activity.

5 Discussion

In this section, we introduce the advantages and disadvan-
tages of our innovative methods from the obtained experi-
mental results and some discussions about reliability.

5.1 Preprocessing

The construction process of formal lattice depends on the
correlations between objects and attributes. Normally, each
data with categorical or binary value should be treated as
an element in the set of attributes. However, sensor events
with discrete values could not be well represented by binary
relations. To avoid high dimensionality, discrete sensor val-
ues should be transformed into categorical ones by disjoint
intervals.

Another optional processing is about the feature selec-
tion. In the training phase, if some captured data are not rel-
evant to the belonging activities, or some attributes do not
enable to efficiently differentiate activities, they should be
pruned from the matrix describing correlations.

5.2 Reliability

The discussion about reliability surrounds in several parts.
The first one is about the privacy. In the layout of LIARA
smart home, the types of sensors used in the infrastructure
are the non-intrusive ones, which do not contain private per-
sonal information. Unlike vision-based or video-based meth-
ods dealing with sequential and continuous images contain-
ing a large number of private data, FCA-based inference en-
gine only deals with discrete categorical or numerical values
describing the states of environments. Thus, there is no con-
troversy over privacy.

The second one is the low volume requirement about
the training data. FCA-based methods do not need a large
amount of data for the construction of formal lattice. It could
automatically self-adapt various patterns from small indexed
patterns. Redundant patterns will not bring significant im-
provement in accuracy, in some cases, it will lead overfitting
and the useless features have to be pruned. Besides, Both
LIARA and CASAS datasets adopted the intended strategy
to label the experimental training data [65]. In the intended
strategy, participants followed predefined instructions to do
various activities. Observers could also clarify in case of un-
certainty. For the test dataset, both of them let the participant
use another keyhole strategy to generate complex behavioral
patterns. In the keyhole strategy, observers do not influence
participants behaviors and manually annotate the complex
sequences.

The third one is about the reusability. The inference en-
gine contains three key components: the formal lattice to in-
dex useful itemsets, the accumulated matrix to record his-
torical preferences and weighted arrays as well as matrices
to evaluate causality and threat levels of events [5]. Most of
them are independent, or loosely coupled with each other.
For example, the matrices and arrays are user independent.
The formal lattice could be reusable to provide various be-
havioral patterns of an activity. Furthermore, the accumu-
lated matrix could be replaced without modifying the archi-
tecture of the inference engine.

The fourth one is about the flexibility. As the common
prerequisite of knowledge-driven methods [35], domain ex-
perts are essential to define and model knowledge base in-
cluding the domain of interest, relations among individu-
als, classes and properties. In other words, the interventions
from domain experts generally run through entire knowledge-
based designs.
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Table 7: Performance of FCA-based algorithm in different datasets

Datasets No. Classes No. Features No. Nodes No. Training Items Training Times No. Test Items Test Times
LIARA 12 70 25 25207 0.0062s 2520 0.8093s
CASAS 160 84 5089 160 40.3625s 20 1.6961s

In contrast, the FCA-based inference engine depends on
few prerequisite knowledge. From the FCA construction to
the final recognition, there is no special requirement of un-
derstanding complicated rules or domain knowledge.

The last one is about the robustness. In software engi-
neering, the robustness refers to the ability of a system to
handle exceptions or erroneous inputs during execution. For
a machine learning algorithm, it refers to the stable perfor-
mance while handling datasets with noise. As mentioned
in [35], when different patterns are partially captured or an
occupant exhibited strange behaviors, the performance will
normally fluctuate.

Our FCA-based method not only possesses good gen-
eration capacity, but also is sensitive to detect various ab-
normal behavioral patterns. For each unseen pattern which
is not in the training dataset, but appears in the test dataset,
FCA-based inference engine will analyze its patterns and
the similarity with existing cases, and then propose the tar-
get class with the most similar patterns. According to the
most common abnormal behaviors observed among people
suffering cognitive impairment, in [5], we formally defined
six cognitive errors and proposed a series of customer-built
error detectors. These errors involve the majority of abnor-
mal situations caused by the unreliable data. If the data loss
happens due to less reliable sensors, most activities could be
normally recognized and identified as unfinished ones. Even
in the worse cases, FCA-based methods could evaluate par-
tially observed data, calculate the similarity and classify the
instance into the most possible activity cluster. As shown
in the examples in Tables 1 and 2, repetitive data and few
redundant ones have almost no affection to the final recog-
nition results.

6 Conclusion

In this paper, we introduce a new activity inference engine
to analyze sequential and temporal behavioral patterns in or-
der to recognize complex ongoing ADLs in smart environ-
ments equipped with non-intrusive sensor networks. Com-
plex ADLs involve the activities performed in the concur-
rent, sequential or interleaved ways.

Compared with conventional supervised data mining meth-
ods, our engine has strong generalization capacity and some
reliable characteristics. The results tested in two different
datasets demonstrate the excellent performance in behav-
ioral pattern analysis.

In our future research, we intend to concentrate on the
activity recognition among multiple occupants. In addition,
more complex evaluation in the contextual and temporal parts
will replace current RMSD assessment. A series of opti-
mizations about formal lattice construction are also consid-
ered in the plan. For example, the incremental updating of
new training data, weighted formal context instead of the
binary one and a more efficient pruning mechanism.
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11. Marcel Heerink, Ben Kröse, Vanessa Evers, and Bob
Wielinga. Assessing acceptance of assistive social agent
technology by older adults: the almere model. Interna-
tional journal of social robotics, 2(4):361–375, 2010.



16 Jianguo Hao et al.

12. Paolo Remagnino and Gian Luca Foresti. Ambient in-
telligence: A new multidisciplinary paradigm. IEEE
Transactions on systems, man, and cybernetics-Part A:
Systems and humans, 35(1):1–6, 2005.

13. Diane J Cook, Juan C Augusto, and Vikramaditya R
Jakkula. Ambient intelligence: Technologies, applica-
tions, and opportunities. Pervasive and Mobile Com-
puting, 5(4):277–298, 2009.

14. Charith Perera, Arkady Zaslavsky, Peter Christen, and
Dimitrios Georgakopoulos. Context aware computing
for the internet of things: A survey. IEEE Communica-
tions Surveys & Tutorials, 16(1):414–454, 2014.

15. Liyanage C De Silva, Chamin Morikawa, and Iskan-
dar M Petra. State of the art of smart homes. Engineer-
ing Applications of Artificial Intelligence, 25(7):1313–
1321, 2012.

16. Saisakul Chernbumroong, Shuang Cang, Anthony
Atkins, and Hongnian Yu. Elderly activities recogni-
tion and classification for applications in assisted liv-
ing. Expert Systems with Applications, 40(5):1662–
1674, 2013.

17. G Michael Youngblood, Diane J Cook, and Lawrence B
Holder. Managing adaptive versatile environments. Per-
vasive and Mobile Computing, 1(4):373–403, 2005.

18. MS Ryoo. Human activity prediction: Early recognition
of ongoing activities from streaming videos. In Inter-
national Conference on Computer Vision, pages 1036–
1043, 2011.

19. Geetika Singla, Diane J Cook, and Maureen Schmitter-
Edgecombe. Tracking activities in complex settings
using smart environment technologies. International
journal of biosciences, psychiatry, and technology (IJB-
SPT), 1(1):25, 2009.

20. Charlie Wilson, Tom Hargreaves, and Richard
Hauxwell-Baldwin. Smart homes and their users: a
systematic analysis and key challenges. Personal and
Ubiquitous Computing, 19(2):463–476, 2015.

21. Marie Chan, Daniel Estève, Christophe Escriba, and
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