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Abstract

Activity recognition is one of the most important prerequisites for smart
home applications. It is a challenging topic due to the high requirements
for reliable data acquisition and efficient data analysis. Besides, the hetero-
geneous layouts of smart homes, the number of residents and varied human
behavioral patterns also aggravate the complexity of recognition. There-
fore, most human activity recognition systems are based on an unrealistic
assumption that there is only one resident performing activities. In this
paper, we investigate the issue of multi-resident activity recognition and pro-
pose a knowledge-driven solution on the basis of formal concept analysis
(FCA) to identify human activities from non-intrusive sensor data. We ex-
tract the ontological correlations among sequential behavioral patterns. At
the same time, these correlations are well organized in a graphical knowledge
base, without intervention from domain experts. We propose an incremen-
tal lattice search strategy in order to retrieve the best inference given a few
sensor events. Compared with other conventional probabilistic methods, our
solution outperforms on the CASAS multi-resident benchmark dataset. Fur-
thermore, we open up a promising solution of sequential pattern mining to
discover the ontological features of temporal and sequential sensor data.
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1. Introduction

According to recent reports of United Nations [1, 2], the huge improve-
ment in health and standard of living, the longevity as well as low birth rates
have greatly affected the population proportion of elderly people. As a result,
our world is entering into an aging society and the population aging has actu-
ally affected our lives in many ways [3]. Elderly people usually require more
home care because of their aging-related physical or cognitive impairment.
The progressive deterioration in cognitive skills makes them difficult to live
independently. The expenditure for long-term caregivers gradually increases
the financial burden on families [2]. However, most of them are willing to
live as long as possible in their own homes [4, 5]. As a promising solution for
the elder-care applications, smart homes are designated to provide adaptive
and personalized service for the residents of the home environments [6].

With the help of ambient intelligent (AmI), Internet of things (IoT) and
wireless sensor networks (WSNs) technologies [7, 8], the development of smart
homes has been greatly promoted. First, AmI highlights the importance of
recognizing ambient, contextual and situational information in smart homes.
It advocates the use of pervasive computing [9] and context-aware [10] tech-
nologies for human-centric interactions. Second, WSNs and IoT integrate
various devices and sensors into a unified network to facilitate the real-time
exchange of information [11]. In addition, they make small, low-cost and
non-intrusive sensors with low-power consumption widely deployed in home
automation. In the future, sensing platforms will also intelligently reduce
the data storage and processing requirements, such as remote configuration
[12]. Thus, smart environments can be used for security monitoring, home
automation assistance, situational awareness, energy saving and other fields.

As one of the most important prerequisites for ambient assisted living
applications, identifying ongoing human activities is essential for the design
and development of customized context-aware systems in order to provide ap-
propriate assistance at the right time [13]. The systems should accumulate
data for behavioral analysis to understand what activities are being carried
out and the subsequent essential behaviors required to complete these activi-
ties. Finally, they should choose appropriate feedback to benefit the residents
in the smart environment [14]. However, recognizing human activities in a
sensor-based smart home is a difficult and challenging task for the scien-
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tific community because of unreliable data, varied behavioral patterns, and
interweaving human-object interactions.

Moreover, the complexity of activity recognition increases when there are
multiple residents in a smart environment [15]. Multiple inference rules must
be applied to the same sensors at the same time in the same place. In fact,
most living environments have more than one resident. For example, family
members get together to prepare dinner, or to do housework at the same
time. Multi-resident activities can be carried out in an individual, parallel or
cooperative manner. Because of the social characteristics of human beings,
activities can be coordinated by multiple residents. In these cases, each
sensor reading may involve more than one resident.

Compared with the single-resident activity recognition, recognizing activ-
ities in the multi-resident scenario is equally important. Older people usually
live with other family members like their spouse and children. However, these
family members are not always available to provide timely help. Based on
this assumption, ambient living assistance to monitor the multi-resident ac-
tivities is still necessary, because it will greatly reduce the burden of family
care. Moreover, due to obvious differences in behavioral patterns, the infer-
ences of single-resident activity recognition cannot be directly applied to the
multi-resident one.

In our previous studies, we first proposed the prototype of our inference
system [16] and then successfully recognized the complex activities performed
in a concurrent, sequential or interleaved way [17]. We also showed its great
potential in anomaly detection [18]. As an extension, in this paper, we focus
on the issue of recognizing multi-resident activities in a non-intrusive sensor-
based smart home. The main contributions of the paper are:

- Further extend and improve the application of Formal Concept Analysis
(FCA) in multi-resident activity recognition.

- Propose a promising sequential pattern mining solution to discover the
ontological features of temporal and sequential data.

- Represent and maintain domain knowledge through the concept lattice
of FCA, a graphical knowledge base that is independent of specific
sensor layouts and activities to recognize.

- Retrieve the best inferences of multi-resident activities in the graphical
knowledge base through a new lattice search strategy.
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The remainder of this article is organized as follows. Section 2 surveys
the recent research progress about multi-resident activity recognition in non-
intrusive sensor-based smart environments. Section 3 presents the prelimi-
naries about recognizing multi-resident activities in smart homes. Section 4
introduces the basics of formal concept analysis, and the knowledge-driven
model based on this theory. Section 5 shows the results under different
measurement criteria and compares them with other classic models. The
discussions are investigated in the same section. We conclude in Section 6.

2. Related Work

According to the different ways of data collection, the infrastructure de-
signs of a smart home can be divided into two types: intrusive and non-
intrusive ones [19]. However, in this article, the related work and the solu-
tions proposed later only discuss how to analyze and recognize multi-resident
activities in non-intrusive sensor-based smart homes.

For the intrusive design, many vision-based devices such as RGB cam-
eras, depth cameras, or vision-based social robots are deployed in the liv-
ing environment to capture real-time dynamic information in smart homes
[20, 21, 22, 23, 24]. The captured information is saved in the form of an im-
age sequence, and each image is a set of homogeneous pixel values. Although
vision-based solutions provide more detailed and rich context information
about human behaviors [25], they also collect more private and sensitive in-
formation at the same time. Moreover, the characteristic of large-scale pixel
values determine that the captured image sequences have to be processed by
big data techniques, such as image processing, machine learning and pattern
recognition [26]. Their high computational costs are also a major drawback.

For the non-intrusive one, besides various home appliances providing iden-
tifiable electrical load signature [27], WSNs establish an object network con-
sisting of electronic components such as sensors, actuators or RFID tags
to monitor environmental conditions. These components are usually em-
bedded or attached to household furniture, doors, windows and other daily
necessities. In addition, in recent studies, more and more wearable and mo-
bile devices have been used to collect basic human motions or vital signs
[23, 28, 29]. Fig. 11 depicts the general architecture of a typical sensor-based
smart home. Heterogeneous non-intrusive sensors are deployed throughout
an apartment to monitor and capture human behaviors, as well as the usage
of home appliances.

4



In the literature, different solutions are proposed to solve the problem of
multi-resident activity recognition based on the sensor-based infrastructure
design. They can be categorized as data-driven and knowledge-driven mod-
els. However, both of them regard graphical models as the first choice to
describe the association among activities and to provide a dynamic descrip-
tion of state transitions.

2.1. Data-driven Models

Compared with knowledge-driven models, data-driven ones place more
emphasis on using large-scale data to drive internal reasoning [30]. Some
mainstream solutions are the models based on the statistical and probabilis-
tic theories, such as hidden Markov models (HMMs), conditional random
fields (CRFs) and their variants. They identify all relevant variables in the
smart environment and build dynamic probabilistic models that take into
account the regularity of probability distribution and the state transition
probabilities.

2.1.1. Probabilistic and Statistical Models for Classification

Using historical behaviors and profiles of residents, Crandall and Cook
[31] combine an HMM with a Naive Bayesian Classifier (NBC) to identify
residents. The system maps sensor events to the residents who triggered
them, and then predicts residents’ desires and further interacts with them.
In [32], authors present a Bayesian network-based probabilistic generative
framework to characterize the structural variabilities of complex activities.

Chiang et al. [33] adopt two graphical models, parallel HMM (PHMM)
and coupled HMM (CHMM), to identify activities in a multi-resident en-
vironment. Besides, they also propose a new dynamic Bayesian network
extending CHMM. To model activity patterns, domain knowledge has been
added and sensor data has been categorized in the preprocessing. Benman-
sour et al. [34] develop an HMM-based combined label (CL-HMM) and a
linked HMM (LHMM) to compare their performances against the PHMM
and CHMM methods. Besides, Wang et al. [35] study a temporal proba-
bilistic model called Factorial Conditional Random Field (FCRF) to model
interacting processes in a sensor-based, multi-user scenario.

In [36], Chiang et al. propose a feature-based knowledge transfer frame-
work to extract and transfer knowledge between two different smart environ-
ments. They first use a PCA-like method to reformulate input feature sets,
and then measure the divergence among the features by Jensen-Shannon
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divergence. After that, a graph matching algorithm is used to derive the
best feature mapping between training and testing datasets. Liu et al. [37]
propose another two-stage approach to firstly cluster the training data by
K-means using temporal features like start time, end time and approximate
duration, and secondly to recognize the activities in each cluster.

In fact, reliable transition probabilities and emission matrices depend on
large amounts of training data having stable probability distributions. The
probabilities should be calculated from a dataset which probability distri-
butions are quite close to the reality. Generally, data-driven models stress
on discovering probabilistic or statistical regular patterns over training data.
Thus, reliable probability distributions and statistical stability are the most
important factors for the final results. However, small-scale training data
could not ensure the distributions of training data are infinitely close to the
reality. As a consequence, results of probabilistic models will be sensitive to
unbalanced distributions.

2.1.2. Models using Association Rules

Chen and Tong explore a two-stage activity recognition method in [38]. It
is an extension of the typical HMM and CRF. It uses association rules to learn
combined training sequences at first stage, and then maps test sequences to
multi-resident activities at the second stage.

Prossegger and Bouchachia [39] propose an application of incremental
decision trees to classify activities in a multi-resident context. Their model
allows leaf nodes to be multi-labeled for representing single or multiple classes
and incrementally accommodates new instances as well as new activities.

As reported by Hsu et al. [40], CRFs are applied with different strategies
to preprocess the dataset. Their work investigates the importance of data
association in multi-resident activity recognition. At the same time, it also
emphasizes the significance of considering the noise in the dataset and the
prior knowledge about the environment in the preprocessing.

2.1.3. Deep Learning

Fang and Hu [41] propose a deep learning algorithm to recognize human
activities. They adopt the deep belief networks (DBNs) built by restricted
Boltzmann machine in the research. They also compare their results with
HMM and NBC. Applying artificial neural network (ANN), Oniga and Suto
[42] analyze the signals acquired from acceleration sensors. Zhang et al. [43]
combine HMM and DNN models to recognize activities.
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Moreover, for a part of methods like deep learning algorithm, there is no
efficient mechanism to organize discovered knowledge. As black-boxes, if the
results are not good in some cases, it is hard to explain the reasons and find
out the solutions.

For the data-driven approaches, they try to use mathematical theories to
establish probabilistic or statistical models based on the analysis of historical
data. However, due to the sensitivity of noisy data, they typically have high
requirements for data quality and volume to generate a stable and reusable
model. Data scarcity may cause underfitting. Additional operations, such
as data cleansing, may be applied before processing. Moreover, most of
them have insufficient extensibility. If new training data greatly affects the
probability distribution or statistical stability of previous training dataset,
the entire model needs to be retrained.

2.2. Knowledge-Driven Models

Compared with data-driven approaches, knowledge-driven models are
easier to be understood and interpreted by researchers and domain experts
in knowledge representation. Their classification results are also easier to
explain. When their performance is unsatisfactory, it is easier to find the
reason for optimization. Instead of retraining models to find the regular pat-
terns by probability and statistical theories, knowledge-driven models can be
easily extended by adding homogeneous new domain knowledge.

Ye and Stevenson present a knowledge-driven approach combining ontolo-
gies with semantic matching techniques to recognize daily human activities
[13]. The proposed approach works well for the activities having explicit
semantics, but it is limited in distinguishing the ones having ambiguous se-
mantic features. Their successive research [44] continues to recognize multi-
user concurrent activities from an unsegmented continuous sensor sequence.
Combining ontological reasoning with statistical methods, the boundaries of
different activities are automatically detected by dividing a continuous sensor
sequence into partitions.

Alam et al. [45] investigate the challenges of improving the recognition
of complex activities in multi-resident smart homes. They propose a loosely-
coupled hierarchical dynamic Bayesian network to identify coarse-grained
activities using fine-grained atomic actions and sensor data. Because of the
prohibitive computation, they have to discover the key spatio-temporal con-
straints in the activity contexts across users and learned association rules
on the basis of Apriori algorithm to prune the state space of the Bayesian

7



network. However, the context correlations and constraints among activities
cannot be generated automatically. These constraints well defined the con-
flicts for extra and inter-user activities in spatial and temporal correlations.

Explicit semantics are essential for most of knowledge-driven models. The
models usually depend on prior knowledge defined by domain experts or an
open ontology to infer results. Thus, their maintenance and extension are
difficult for the persons who are not familiar with specific domain knowl-
edge. Moreover, their customization usually requires significant artificial
costs. Sometimes, they can distinguish activities with great semantic gaps
among sensor events, but cannot well recognize two concurrent activities with
similar semantic features [44].

3. Preliminaries about Non-intrusive Smart Homes

In this section, we introduce the preliminaries related to the issues of
sensor-based multi-resident activity recognition. They include the different
features of data streams, multi-level data granularity and the formal defini-
tion of multi-resident activity recognition.

3.1. Data Features

As an important factor of data mining, data features are crucial for ef-
ficient data analysis [46]. It directly determines which methods are more
suitable for preprocessing, feature selection and knowledge discovery [47].
Unlike the vision-based solutions which generate derived features from pixel
values of original image to detect desired portions or shapes [48, 49, 50], the
sensor-based ones focus more on the natural characteristics of sensor events,
such as spatio-temporal features, probabilistic and contextual information.

As a result of continuous samplings and information exchange, ubiquitous
electronic components constantly generate a large number of data to describe
environmental changes in smart homes. The changes involve human motions,
environmental conditions [51] (including locations, movements and tempera-
ture, etc), consumption [27] (energy or resources) and human-to-environment
interactions [35].

There are several distinct features of the data generated in smart homes.
First of all, large volumes of data provide an opportunity to discover rules
and correlations from seemingly chaotic data through mathematical, espe-
cially probability and statistical theories. Then, each captured data has a
timestamp that records the exact moment when a sensor event was captured
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or triggered. Next, based on the timestamps, all the data captured in a time
interval can be sorted into a sequence. The order of the captured data always
contains rich contextual relations, as some specific data is often restricted by
several causal constraints. In addition, because of the heterogeneous sensors,
their data types can be discrete, continuous, nominal (categorical), binary,
ordinal or numeric [47]. Finally, people can carry out activities one after
another in reality. Therefore, the data is usually continuous and there is no
clear boundary to determine the beginning and end of an activity. Moreover,
multi-resident activities are more difficult to recognize, because the data be-
longing to different residents can be recorded at the same time.

3.2. Data Granularity in Smart Environments

Figure 1: Data granularity in smart homes

The data produced by sensor-based smart homes can be divided into three
layers of granularity. Each layer represents a type of behavioral element.
There are two primary many-to-many mappings in the sensor-based activity
recognition. The first one is from low-level sensor events to high-level activ-
ities (e.g. Sl ⇒ An). The second one uses intermediate-level atomic actions
to recognize high-level activities (e.g. Cm ⇒ An). Fig. 1 represents these
mappings. Atomic actions are the smallest human behaviors that cannot be
further subdivided, such as walking, sitting, standing up, taking, bringing,
opening, closing, stirring, etc. They either describe the instantaneous state of
human behavior, or the current interaction with other objects. Fine-grained
elements are located at relatively lower layers (e.g. Sl or Cm for An). Each
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coarse-grained element consists of one or more fine-grained elements. For ex-
ample, an activity “prepare dinner (A1)” consists of several atomic actions,
such as “take out something from a refrigerator (C1)” and “preheat an oven
(C2)”, in other words, C1, C2 ⇒ A1. In addition, both C1 and C2 can also
be detected and represented by one or more sensor events (Sl), written as
Sl ⇒ C1, C2.

3.3. Multiple Resident Activity Recognition

Before exploring and recognizing activities performed by multiple resi-
dents, we should first analyze their regular patterns. The multiple resident
activities can be jointly performed in two manners: parallel and cooperative.

Figure 2: Regular behavioral patterns of multi-resident activities in smart homes

Fig. 2 illustrates the different patterns of multi-resident activities that
occur in a smart home. The transverse axis is a time axis in order to illustrate
the sequential relations between the captured pattern and the original ones.
Ideally, the topmost pattern is captured and observed by the smart home.
It contains multiple behavioral patterns describing parallel or cooperative
activities. It should be decomposed as the three following patterns classified
by activities. The squares of different colors represent different activities
of different residents (e.g. two residents R1 and R2). A sensor event may
be triggered by either a resident (e.g. D07 was triggered by R1 and D12
triggered by R2.), or multiple ones (e.g. M17 was triggered by both R1 and
R2).

In the parallel manner, different activities are carried out independently
by different residents at the same time. Two or more behavioral patterns
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are independent of each other. Since there is no causal constraint between
different activities, their behavioral data will be interweaved. In addition,
almost all sensor events are triggered by only one resident (see the patterns
of reading magazine and hanging up clothes in Fig. 2). For cooperative
activities, an activity is carried out in cooperation by a group of people
[51, 52]. When an activity is either interactive or cooperative, a resident can
ask others to participate in order to achieve a common goal. Due to the
interaction and cooperation, most sensor events are triggered by multiple
residents at the same time, it is difficult to determine exactly who triggered
which sensor event (see the pattern of playing checkers in Fig. 2).

4. Formal Concept Analysis

Formal concept analysis (FCA) is a field of applied mathematics based on
the concept and conceptual hierarchy. It activates the mathematical think-
ing for conceptual data analysis and knowledge discovery [53]. With its help,
heterogeneous correlations existing between target classes of interest and
observable features can be unified as homogeneous binary relations. FCA
firstly clusters similar target classes sharing the same ontological features,
then encapsulates them as inferences, and finally orders them for fast re-
trieval. Given the observations of different stages, our FCA-based model
can make incremental inferences about possible ongoing activities done by
different residents.

Because of the excellent performance of knowledge representation and
extraction in large volumes of unstructured data [54], FCA is widely used
in the fields like knowledge discovery, ontology learning [55], information
retrieval and recommender system [56] to extract useful information and to
construct a knowledge graph for data organization and visualization [57].

4.1. Knowledge Management by FCA

In this subsection, we describe the components of FCA and their roles
in knowledge representation and management. At the same time, we also
explain how to use FCA theory to solve the problem of multi-resident activity
recognition. Fig. 4 outlines the overview process of modeling and recognition.
After observing a sequence of sensor events, the modeling (or training) phase
is marked by a red trajectory, and the recognition phase is marked by the
black one.
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Simplified CASAS Activities [51]
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Fill medication dispenser g1 × × ×
Hang up clothes g2 × × × ×
Move furniture g3 × ×
Read magazine g4 × × ×
Water plants g5 × ×
Sweep floor g6 × × × × × × ×
Play checkers g7 × ×
Prepare dinner g8 × ×
Set table g9 × × ×
Read magazine g10 × ×
Pay bills g11 × ×
Pack picnic food g12 × ×
Pack picnic food g12′ × ×
Retrieve dishes g13 × × × × ×
Retrieve dishes g13′ × × × ×
Retrieve dishes g13′′ × × × ×
Pack picnic supplies g14 × × ×
Pack and bring supplies g15 × × × × × ×

Figure 3: Matrix representing the correlations between activities gi and sensors mj .

Figure 4: Overview process of FCA modeling and activity recognition
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Fig. 5 outlines the procedure concerning FCA-based modeling, from
knowledge extraction to visualization. First, the correlations between ac-
tivities and sensor events are abstracted into a formal context. Second, an
optional feature selection is executed to prune redundant and irrelevant fea-
tures. Third, knowledge is discovered by two concept-forming operations and
encapsulated as inferences. Finally, a graphical knowledge base is constructed
by sorting and indexing those inferences and can be visualized through a
Hasse diagram.

Figure 5: Procedure of Knowledge Representation and Management by FCA

4.1.1. Knowledge Storage by Formal Context

Due to various data features and the multi-level granularity, unifying and
managing heterogeneous data is a thorny issue. To solve this problem and
then analyze the temporal and sequential patterns, first of all, the correlations
between target classes and observable features are mapped to a specific data
structure named formal context.

Formal contextK(G,M, I) is a mathematical abstraction of reality scenes.
The triplet structure K consists of two disjoint sets G and M , and their
Cartesian product set I. The elements of G are called objects, which represent
coarse-grained target classes. The ones of M are called attributes, which
represent fine-grained observable features. If g ∈ G is correlated withm ∈M ,
the correlation can be written as gIm [53]. Context K can be represented
and visualized by a |G| × |M | matrix. With the help of formal context, FCA
can further discovery the dependencies between G and M .

Application 1. In the case of activity recognition, we treat the activities to
recognize as target classes G and observable sensor events as feature variables
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M . For instance, we introduce a simplified version of a benchmark dataset
called CASAS [51] as a concrete example. Sequential and temporal data is
extracted and stored in a 17 × 13 binary matrix (see Fig. 3). It is worth
mentioning that g13, g13′ and g13′′ are three different patterns to accomplish
the same activity “Retrieve dishes”. In particular, with the same sensor
events, g13′′ is redundant for g13′ , and will be reduced later. There are 13
non-intrusive sensors that passively capture human behaviors in a smart
apartment. To extract correlations, if a sensor event mj appears in the data
stream describing an activity gi, it means giImj, and the element at row gi
and column mj of the matrix will be filled by a cross.

4.1.2. Similarity Maximization by Concept-Forming Operations

In data mining, especially data clustering technique, similarity metrics
are essential to generate clusters [58]. To exploit useful information from
an FCA matrix and cluster similar target classes sharing the same feature
variables, FCA defines its own metrics to maximize similarity. Items in
the same cluster have high similarity because they share some of the same
ontological features.

A pair of closure operations, so-called the concept-forming operators, is
introduced. As mentioned above, the target classes are the activities to
recognize, and the features are the observable sensor events captured by
various non-intrusive sensors.

For a subset G1 ⊆ G, we define

G′
1 := {m ∈M | for all g ∈ G1, gIm} (1)

as an operation to find out the common features G′
1 ⊆ M shared by all the

objects in G1. Conversely, for M1 ⊆ M , we define

M ′
1 := {g ∈ G | for all m ∈M1, gIm} (2)

as another operation to find out all the objects M ′
1 ⊆ G sharing the common

features M1 [53].
Using the two operators at the same time, FCA could generate stable

closures, named class-feature pairs, to cluster correlated classes and features
for maximizing their dependency and the similarity. In our case, the operator
(1) can find out the common sensor events shared by a set of activities, and
the operator (2) can reveal which activities have the given set of observations
(sensor events).

14



Application 2. For instance, if sensor events {m3, m10} are observed, ac-
cording to {m3m10}

′ = {g2g6g9g15}, the most possible ongoing activities
are g2, g6, g9 and g15. However, such a class-feature pair is not stable due
to {g2g6g9g15}

′ = {m3m10m13}. The stable one is {g2g6g9g15, m3m10m13},
called a formal concept.

4.1.3. Cluster Representation by Formal Concept

To infer ongoing activities from given observable features, FCA uses the
discovered knowledge encapsulated in those class-feature pairs. Moreover,
to ensure the reliability of inferences, FCA only uses the stable pairs that
simultaneously satisfy the two concept-forming operations. The satisfied
pairs are the special clusters called formal concepts.

A formal concept c := (G1,M1) is a closure that is formed under the con-
straints of the two concept-forming operations (1)(2), where (G′

1)
′ = (M1)

′ =
G1. G1 is called the extent of concept c, written as ext(c). Likewise, M1 is
called the intent of c, written as int(c) [53], which is also the centroid of the
cluster [58, 59]. The universe containing all the concepts of a context K is
represented by B(G,M, I).

For FCA, concepts are the smallest units with reliable discovered knowl-
edge. Thus, they are also treated as reliable inferences. For any concept c, its
extent ext(c) indicates the predicted ongoing activities if the features in the
intent int(c) are observed. The properties of closure ensure the maximization
of ontological similarity and dependency in a concept.

Application 3. A concept c clusters and encapsulates similar activities into
ext(c) on the basis of the common features in int(c). Furthermore, if a
sequence of sensor events α ⊂ int(c) is observed, the elements in ext(c)
indicate the recognized ongoing activities given α.

{ g2g6g9g15
︸ ︷︷ ︸

recognized ongoing activities

,

current observed data
︷ ︸︸ ︷
m3m10m13 }

In the above example, ext(c) = {g2g6g9g15} and int(c) = {m3m10m13}. As
described in Section 4.1.2, the sensor events in int(c) exist in all the patterns
of activities in ext(c). Therefore, if the sensor events currently observed are
m3, m10 and m13, the scope of possible ongoing activities should be g2, g6, g9
or g15.
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4.1.4. Cluster Indexation by Concept Lattice

After generating the concepts that cluster similar classes by different cen-
troids (i.e. feature variables), FCA provides a solution to automatically index
all the discovered concepts. The purpose is to effectively manage and con-
struct a graphical knowledge base to quickly retrieve inferences.

Concept lattice B is an ordered version of B(G,M, I). All the concepts
in B are ordered by a predefined partial order � indicating the hierarchical
relations between two concepts [53].

Suppose (G1,M1) and (G2,M2) are two concepts, (G1,M1) is called the
subconcept of (G2,M2) if either G1 ⊆ G2 or M2 ⊆ M1, written as (G1,M1) �
(G2,M2). The symbol � is a partial order in mathematics named hierarchical
order. Meanwhile, (G2,M2) is the superconcept of (G1,M1). It is worth
pointing out that the subconcept and the superconcept of a concept are not
unique in B(G,M, I) due to the transitive relation.

The lattice construction is a data mining process that first discovers all
the concepts of a context K, and then orders them simultaneously. In recent
decades, many researchers have made great efforts in order to construct a
concept lattice efficiently [60]. Our model is built on the basis of the con-
struction algorithm proposed by Lindig [61].

Application 4. Three concepts, {g6g8g13g13′, m10m11}, {g6g13g13′ , m8m9m10m11}
and {g13, m4m8m9m10m11}, are mined from the matrix in Fig. 3. As shown
in Equation (3), the last two concepts are the superconcepts of the first one.

{g13, m4m8m9m10m11} � {g6g13g13′ , m8m9m10m11}

� {g6g8g13g13′ , m10m11}
(3)

The relations between two concepts with different centroids are sorted
and linked by the hierarchical order. Thus, a lattice B constructed by any
lattice construction algorithm can be visualized as a graphical model.

4.1.5. Knowledge Visualization by Hasse Diagram

In mathematics, a finite partially ordered set can be depicted by a Hasse
diagram. In our case, a lattice B can be visualized as the one shown in
Fig. 6. Each node refers to a discovered concept, and partial orders are
represented by edges, which are also named Galois connections [53].

There are two special nodes in a Hasse diagram: the topmost one {G,∅}
named Supremum and the lowermost one {∅,M} named Infimum. They

16



represent the initial and final states of an activity recognition process, re-
spectively. Once a Hasse diagram is built, the next step is to use efficient
algorithms to retrieve the knowledge encapsulated inside the concepts from
its graphical structure.

Application 5. As we can see from Fig. 6, concepts are organized by different
levels. From the top to bottom in a Hasse diagram, the range of possible
activities is narrowed when more sensor events are observed.

Figure 6: Hasse diagram of Matrix in Fig. 3

4.1.6. Pruning

To enhance the generalization of algorithm and improve the efficiency of
lattice construction, in the feature selection, we propose two optional prun-
ing processes to filter the useless attributes of a context. The first one is
called the global pruning. The attributes that have extremely high or low
occurrences should be removed from the context to avoid overfitting. This
is because the attributes with extremely high occurrences have very limited

17



ability to differentiate different activities. Similarly, the ones with extremely
low occurrences are usually identified as noisy or meaningless data.

The second one is called the local pruning. Training data can be first
grouped by activities according to their labels, and then a pruning operation
is used to filter the correlations (i.e. crosses in the matrix) with extremely
low occurrences in a group. In our previous research [18], attributes were
classified into two types: essential and optional. Essential attributes mean
that they are indispensable for an activity, in other words, they appear in all
the patterns describing the same activity. Optional attributes usually repre-
sent personal preferences and they do not appear in each pattern. Therefore,
in a group that contains all the patterns describing the same activity, the
correlations with low occurrences will be treated as noisy data.

4.2. Knowledge Retrieval

Once unstructured knowledge is extracted by FCA and encapsulated in
a Hasse diagram, efficient knowledge retrieval is crucial to fast query appro-
priate inferences based on the observed data. Consequently, we propose an
FCA diagram search algorithm based on the breadth-first search (BFS). As
an incremental search algorithm, when the new data updates the observed
data, the current search will continue the previous one by loading the last
located concept (i.e. node), and then will update the search result of this
round for the next search. The new algorithm is called the Half-Duplex Search
(HDS) algorithm, which consists of two parts. The top-down part aims to
quickly find the first concept containing the observed data. Searching along
the backward partial orders, the bottom-up part is designed to ensure that
the newly located concept containing the observed data is the topmost one,
and also the optimal solution.

As a pruned version of the Hasse diagram shown in Fig. 6, Fig. 7 depicts a
simplified retrieval process, where the number in a node is the id of that node.
Consider a successively observed sequence of sensor events α = {M9 ≺M6},
node n3 having M9 is firstly located. When M6 is observed, HDS starts a
continuous search at the previous node n3.

To locate n14, the topmost concept having α, there are two alternative
paths: 1 → 3 → 7 → 14 and 1 → 3 → 8 → 18 → 14. This is because both
n7 and n8 at the same level in the diagram have the same priority for BFS.
If n8 is chosen, the first located node having α is n18. Evidently, it is not
the topmost one because n18 � n14 and ext(n18) ⊂ ext(n14). Thus, if n18

is chosen as the search result, it will make some relevant inferences missing
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Figure 7: Knowledge retrieval using half-duplex diagram search
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(e.g. the missing inferences equals ext(n14)− ext(n18)). That is why we use
the bottom-up algorithm to locate the topmost concept.

Algorithm 1: Top-down search of HDS algorithm

Data: previous position p, sequence α.
Result: first met concept containing α.

1 begin
2 fifo ← node[p]
3 while fifo do
4 if fifo[0] not visited then
5 mark as visited
6 if α ⊆ fifo[0].intent then
7 return fifo[0]
8 else
9 add fifo[0].successors into fifo

10 remove fifo[0] from fifo

11 end

12 end

Algorithms 1 and 2 are the pseudo-codes of top-down and bottom-up
algorithms. In Algorithm 1, the first concept that contains the observed data
α is located at Line 6 to 7. After that, Algorithm 2 incrementally searches
the topmost concept from the last located node of Algorithm 1 along the
reverse partial orders. A temporary set S is created to cache all the found
concepts containing α. At the end (see Line 12), the topmost concept is
determined by calculating the cardinalities of intents of the concepts in S.
The concept having the minimal cardinality of intent is the topmost one due
to the hierarchical order.

4.2.1. Behavioral Pattern Recognition

As shown in Section 3.3, multi-resident activities are classified as two
categories: parallel and cooperative. Therefore, their behavioral patterns
can also be divided into two types.

For multi-resident activities, behavioral data belonging to different resi-
dents or activities are often interweaved in their executions. This proposition
is based on the analysis of the behavioral patterns of these two categories of
activities. For parallel activities, two or more behavioral patterns are inde-
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Algorithm 2: Bottom-up search of HDS algorithm

Data: located position p, sequence α.
Result: topmost concept containing α.

1 begin
2 fifo ← node[p].predecessors
3 S ← ∅

4 while fifo do
5 if fifo[0] not visited then
6 mark as visited
7 if α ⊆ fifo[0].intent then
8 add fifo[0].predecessors into fifo
9 S ← S ∪ fifo[0]

10 remove fifo[0] from fifo

11 end
12 return argmin

s∈S
(| s.intents |)

13 end

pendent of each other. Since there is no causal constraint between different
activities, their behavioral data will be interweaved. In addition, almost all
sensor events are triggered by only one resident (see the patterns of read-
ing magazine and hanging up clothes in Fig. 2). For cooperative activities,
due to the interaction and cooperation of residents, most sensor events are
triggered by multiple residents at the same time, it is difficult to determine
exactly who triggered which sensor event (see the pattern of play checkers in
Fig. 2).

In order to simulate the interweaving situation, we create several tem-
porary caches to simulate the long-term intentions of residents (i.e. the
activities they are willing to do). As shown in Fig. 8, each cache stores the
search result of last knowledge retrieval in Hasse diagram. It indicates the
inference about all possible ongoing activities given partially observed sensor
events. The system continuously loads subsequently observed sensor events.
If a newly captured sensor event makes the new retrieval return the Infimum
as the search result, it means that this sensor event is very different from the
previously observed data in the ontology. It will be rejected by the current
cache (i.e. the current intention) and the cache itself will rollback. The sys-
tem will perform a roll polling operation to check if any existing cache can
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accept it. If all existing caches have triggered the rollback operation, the sys-
tem will create a new cache to store this sensor event. In other words, a new
parallel or cooperative activity may be in progress. At the beginning, there
is only one primary cache for each resident. As time passes, residents start
to interact with the other residents or carry out parallel activities, and more
and more caches indicating different inferences are added into the polling.

Figure 8: Recognition process using Hasse diagram

Once a cache has enough observed sensor events about an activity, the
extent of the concept located by the cache determine the final recognition
result.

Activities will be considered as recognized when there is only one object
in the extent of the final located concept, such as n13, n16 and n20, or an
object have never shown in its successive concepts, like g4 in n14 could not
be found in its subconcept n18.

Suppose α = {M09≺M06≺M17≺D13≺D07≺M13≺M07} is a sequence
indicating multi-resident activities g13 and g14. Table. 1 illustrates the
recognition process. The symbol y represents a transition of inference and
�Infimum represents a rollback operation from the Infimum. At round 2, the
bottom-up search ensures that node 14 is located, not node 18. At round
3, when M17 is observed, {M09M23M17} is excluded by previously located
node 14 because there is no subconcept containing it except the Infimum.
Thus, after the roll polling, a new cache is created to store M17. At round 8,
when there is no more observable sensor event, the missing data M09 in the
second cache will be automatically completed by the previous one observed
at round 1.
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Table 1: Example of multi-resident activity recognition

Round
Observed Located Predictive
Data α Topmost Concept Activities

1 {M09}
node 3 g2g4g6g8

{g2g4g6g8g9g13g13′g14g15,M09} g9g13g13′g14g15

2 {M09M06}
node 3 y node 14

g4g6g13g13′{g4g6g13g13′ ,M06M07M09}

3 {M09M06M17}

node 14 �Infimum
g4g6g13g13′{g4g6g13g13′ ,M06M07M09}

node 5
g1g6g7g10g11g14g15{g1g6g7g10g11g14g15,M17}

4 {M09M06M17D13}

node 14 y node 20
g13{g13,D13M06M07M09M13}

node 5 �Infimum
g1g6g7g10g11g14g15{g1g6g7g10g11g14g15,M17}

5

node 20 �Infimum
g13{M09M06M17D13 {g13,D13M06M07M09M13}

D07} node 5 y node 12
g1g10g14{g1g10g14,D07M17}

6

node 20 �
g13{M09M06M17D13 {g13,D13M06M07M09M13}

D07M13} node 12 �Infimum
g1g10g14{g1g10g14,D07M17}

7

node 20 �
g13{M09M06M17D13 {g13,D13M06M07M09M13}

D07M13M07} node 12 �Infimum
g1g10g14{g1g10g14,D07M17}

8

node 20 �
g13{M09M06M17D13 {g13,D13M06M07M09M13}

D07M13M07} node 12 y node 16
g14{g14,D07M09M17}
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4.2.2. Transition Matrix

Figure 9: Identifying highly similar activities by transition matrix

Besides the FCA-based graphical model, for |G| indexed activities, we
define a transition matrix Ti for each of them to record the context informa-
tion among sensor data (see Fig. 10). The objective is to distinguish similar
or multi-level inheritance patterns. For instance, g1 and g2 are two highly
similar activities, and the sensor events of g1 are the subset of the ones of
g2. If they are performed by two residents at the same time, it is hard to
correctly identify the real ongoing activities in the duplicate data without
considering context information. Fortunately, transition matrices provide a
feasible solution because even two similar patterns having exactly the same
set of sensor data, the transition states among sensor data will be different.

Each Ti is a N × N square matrix where N = |M | + 2 and |M | is the
cardinality of indexed sensor events. Its columns or rows indicate an array
{start,m1, ..., mj , ..., m|M |, end} where start and end are the boundary labels
appearing in the training data.

For example, in the training phase, if a sequence describing activity g5 is
{start,m8, m9, m9, end}, the elements a0,8, a8,9, a9,9 and a9,N−1 in the matrix
T5 should be updated.
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T1 =








a00 2 · · · 4
0 a11 · · · 5
...

...
. . .

...
0 5 · · · aN−1,N−1








... ... T|G| =








0 0 · · · 20
7 6 · · · 11
...

...
. . .

...
1 2 · · · 0








Figure 10: Transition matrices of different activities

In fact, duplicate data indicating repeated sensor events comes from fre-
quent sampling or repeated triggering. In the recognition phase, when a new
sensor event is repetitive, it will be only checked by the transition matrix.
This is because duplicate sensor data will always be accepted by the caches
containing it.

For example, because of few sensors deployed in an apartment, g4, g5
are two totally different activities, but they have similar sensor data. g′5 =
{m8, m9} and g′4 = {m8, m9, m10}, so g′5 ⊂ g′4. As shown in Fig. 9, suppose
the observed data are {m9 ≺ m8 ≺ m10 ≺ m8 ≺ m9}. Duplicated data
m8, m9 will be detected after being observed (see step 1 in the figure). Be-
cause of no clear boundary, we could not simply justify that the duplicated
m8 belong to g4, so we check the transition matrices to verify the transition
a10,8 in T4. A cache will be created to store the duplicated data (see step
2) if and only if aij is lower than a threshold for any pattern of g4. A roll
polling operation (see step 3) will check each cache when a new duplicated
data is observed.

4.3. Candidate Assessment

Because of few observed data, a concept usually has more than one ele-
ment in its extent, which means that there are several candidates (possible
ongoing activities) according to the observed data. Redundant candidates
are ambiguous and useless to make decisions for real-time assistance. In this
case, we desire to evaluate the relevance of each candidate in a concept and
choose the most relevant one as the local optimal prediction. The relevance
is defined as the similarity between existing learned patterns and the pattern
to recognize.

As mentioned in the previous sections, an activity gi could be accom-
plished by alternative patterns because of different personal preferences.
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Furthermore, these derived patterns have flexible execution orders, repeti-
tive events and optional data. At the same time, each resident may have
a relatively stable preference to execute an activity. Namely, for the same
resident executing an activity, there are only a few deviations among each ex-
ecution. Based on this hypothesis, we take advantage of historical patterns
containing the preferences of residents to generate a knowledge database
called accumulated matrix. For each sensor data, we calculate its expectant
position appearing in each activity to establish a series of naive distributions.

To measure the contextual similarities between historical patterns and the
one of the current ongoing activity, average deviations are calculated using
Root-Mean-Square Deviation (RMSD). It makes a quantitative comparison
to estimate how well the current behavioral pattern fits accumulated histori-
cal data. A lower RMSD score indicates that the prediction is more accurate
due to the adaptation to the historical patterns.

We propose our assessment as follows: for each candidate gi in the extent,
under the condition of executing gi, we calculate the deviation between actual
average positions in α and the accumulated ones in the matrix. Thus, the
local optimal prediction should be the one with minimal deviation which
has the best adaptation in comparison with historical data. Obviously, our
assessment consists of two modules: accumulation and evaluation.

4.3.1. Accumulation

For each sensor data αj in a training item α, which is a complete sequence
of sensor data of activity gi (i.e. αj ∈ α, α ∈ gi), we update the accumu-
lated value of corresponding element (gi, αj) in the accumulated matrix by
Equation (4):

σij = σ′
ij + j (4)

where j is the position of αj in α. σ′
ij is the previous accumulated value and

σij is the newly updated one. The number of accumulated values σij is the
sum of positions of a sensor event αj that appears in each pattern describing
activity gi. If a pattern is stored in an array, the position of a sensor event
can be defined as its index value in the array. We accumulate such a value
in order to calculate the average positions of sensor values and to calculate
the standard deviation to measure the confidence of each average position.
Equation (5) represents the same accumulation in another global view:

σij =

Nij∑

k=1

σ(ij,k) (5)
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where Nij represents the occurrences of the sensor data (gi, αj) existing in
the whole training dataset. σ(ij,k) is the position of αj in the k-th training
item describing activity gi.

4.3.2. Evaluation

When an incoming event αj was observed, first of all, we calculate its
average position ϕj in current sequence α. It is calculated by Equation (6).

ϕj =
1

#αj

|α|
∑

k=1

k[αk = αj] (6)

where |α| is the size of current sequence α, and #αj is the occurrences of
αj in α. The condition αk = αj surrounded by the Iverson bracket is to
integrate all the discrete positions of αj .

And then, for each candidate gi, we calculate the deviation of α given
gi. Equation (7) expresses the root-mean-square deviation Di of current
sequence α executing gi:

Di =

√
1

|α|

∑

∀αj∈α

(ϕj −
1

Nij

σij)
2 (7)

where σij/Nij is the expectant position obtained from accumulated matrix.
Thus, RMSD scores {D1, D2, ..., Di} of candidates in the current extent

G1 = {g1, g2, ..., gi} were calculated. The element gi having the minimal
RMSD value is the local optimal prediction because of the best adaptation
to historical patterns.

5. Experiments

In this section, we use a benchmark dataset to evaluate the performance
of our models. To compare the results with other models under the same
measures, the following experiments are evaluated by both leave-one-out
(LOOCV) and 3-fold cross-validations [62].

5.1. Dataset

The benchmark dataset adopted in the experiments is the CASAS Kyoto-
4 multi-resident dataset 1. It contains sensor events collected from a smart

1http://ailab.wsu.edu/casas/datasets
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Figure 11: Non-intrusive sensor layout of the CASAS smart apartment
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apartment testbed. To generate Kyoto4 dataset, researchers from CASAS
laboratory recruited 40 volunteer participants to perform 15 activities in
their smart apartment [51]. Each time, the multi-resident environment was
occupied by two volunteers at the same time to perform assigned tasks con-
currently. Collected sensor events were manually labeled with the activity
ID it belongs to, and the ID of the resident who triggered it.

Fig. 11 shows the non-intrusive sensor layout of the CASAS smart apart-
ment. Heterogeneous sensors are ubiquitously deployed in the house. Dif-
ferent types of sensor information have different distinguishable ability to
classify different activities. In the CASAS datasets, researchers rely upon
motion (Mi) and temperature sensors, analog sensors (Di), as well as item
sensors (Ii) to recognize activities that are being performed [51, 63, 64]. Mo-
tion sensors can provide active spatial information about human activities,
and item sensors can record the interactions between residents and specific
objects of interest such as refrigerators, keys and medicine containers [64].
Analog sensors can monitor the use of water and stove burner, as well as
the open/close operations of doors, windows and cabinets. However, most
of them cannot provide decisive information to distinguish who (or which
activity) produced the sensor events [14].

Activity ID Activity Type Performers
1 Fill medication dispenser Individual R1
2 Hang up clothes Individual R2
3 Move furniture Cooperative R1, R2
4 Read magazine Individual R2
5 Water plants Individual R1
6 Sweep floor Individual R2
7 Play checkers Cooperative R1, R2
8 Prepare dinner Individual R1
9 Set table Individual R2
10 Read magazine Individual R1
11 Pay bills Cooperative R1, R2
12 Pack picnic food Individual R1
13 Retrieve dishes Cooperative R1,R2
14 Pack picnic supplies Cooperative R2
15 Pack and bring supplies Individual R1

Table 2: Independent and cooperative activities in the CASAS dataset

As shown in Table 2, “R1” and “R2” refer to two different residents.
Sometimes, two residents performed activities together called “joint activi-
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ties” or in the same space. For joint activities, residents cooperate to jointly
accomplish the task. The remaining independent activities are performed
independently and in parallel [51]. The average activity times and number
of sensor events generated for each activity are shown in Table. 3 [51].

Activity ID R1 Time R1 Events Activity ID R2 Time R2 Events
1 3.0 47 2 1.5 55
3 0.7 33 3 0.5 23
5 2.5 61 4 1.0 18
7 3.5 38 6 2.0 72
8 1.5 41 7 2.0 25
10 4.5 64 9 1.0 32

12, 15 1.5 37 11 5.0 65
- N/A N/A 13, 14 3.0 38

Table 3: Average time (in minutes) and number of sensor events generated for each activity
[51]

5.2. Modeling

As shown in Fig. 5, in the training phase, FCA extracts correlations from
sequences of activities and then saves them into an FCA matrix. The first
column indicates “activity with the id of training item” and the remaining
ones indicate “sensor events”. If a training item (i.e. a sequence of sensor
events describing an activity) contains certain sensor events, it is affirmed
that there is a binary relations among them. Correlations are represented as
crosses in the matrix. Before constructing the Hasse diagram from training
data, the pruning operation is executed for filtering redundant attributes.

Hidden ontological correlations are discovered by the matrix. Once differ-
ent items describing the same activity have been put together, most of their
internal attributes have clustered due to their similarity in the ontology. This
is because an activity is associated with a specific location and constant inter-
active items. For example, activities involving preparing coffees will always
interact with coffee cups. Another example is that the activity of preparing
dinners always involves some fixed positions in the kitchen. Thus, the related
correlations in the FCA matrix will cluster together and generate a group as
a node in a Hasse diagram.

5.3. Results and Discussion

Cooperative activities could also be called joint activities if and only if at
the same time, both of resident perform the same cooperative activity. The
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NBC [64] HMM [64] CRF [40] TSM-HMM [38] TSM-CRF [38] FCA
Accuracy 63.27 60.90 58.41 75.77 75.38 94.26

Table 4: Comparison of recognition accuracies

cooperative could be regarded as well recognized when both of recognitions
are correct. We compare our results with other references using the same
dataset [33, 34, 38, 40, 51, 64, 65].

Figure 12: Performance of recognizing each multi-resident activity

First of all, we compare each activity recognition result with [51] and
show the results in Fig. 12. Our results also surpass the results shown in
Fig. 9 of [38]. The results are based on the same 3-fold cross-validation.
As described in [51], HMM-1 is a single HMM model implemented for both
residents. For HMM-2, an HMM model is built for each resident. In the
results, we could see that most of the recognition are excellent except two
activities: water plants (activity 5) and picnic food (activity 12). The reason
has been indicated in [51] that the activities with insufficient sensor events
will be difficult to differentiate from other activities. In the view of FCA
models, the distinguishable ability of a sensor is negatively correlated with
the number of shared activities. We also compare our results with other
classical algorithms, including naive Bayes classifier (NBC), hidden Markov
model (HMM), conditional random field (CRF) and their variants. The brief
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Approach Residents Accuracy Individual Cooperative Average Precision Recall F-measure
CL-HMM [34] R1 91.33±8.15 91.11±8.41 92.76±21.87 91.78±11.68 92.25±6.99 92.54±6.59 92.38±6.71

R2 91.61±7.87 92.37±6.64 91.22±11.07 91.8±6.96 91.12±7.43 91.7±7.99 91.35±7.5
Average 91.47±7.5 91.74±6.07 92.33±11.24 91.91±7.3 91.68±6.1 92.12±6.42 91.89±6.17

LHMM [34] R1 92.36±8.48 93.86±7.89 65.19±43.57 81.4±21.32 93.25±7.46 91.93±7.56 92.48±6.98
R2 94.17±5.05 90.8±7.52 96.42±5.48 93.61±5.12 93.9±5.44 93.43±6.4 93.61±5.63

Average 93.27±6.21 92.33±6.95 82.77±21.3 87.53±11.22 93.58±5.41 92.68±6.18 93.1±5.62
FCA R1 97.25±7.94 97.25±7.94 96.26±10.17 96.75±0.49 98.90±5.49 98.35±6.04 98.42±4.60

R2 94.71±8.61 90.38±15.6 99.03±4.81 94.70±4.32 97.05±6.42 97.53±6.15 97.07±4.85
Average 95.98±1.27 93.81±3.43 97.26±2.11 95.53±1.73 97.97±0.93 97.94±0.41 97.75±0.68

Table 5: Comparison of results categorized by different activity types and residents

Methods Accuracy Precision Recall F-measure
FCA† 92.86±12.54 97.62±2.06 95.24±11.66 95.10± 9.32

LHMM† [34] 88.23±10.23 81.46±10.27 79.43± 10.35 80.3±9.84
TSM-HMM∗ [38] 97.40 80.03 81.92 40.48
TSM-CRF∗ [38] 97.25 80.05 79.91 39.99

CHMM+Interaction vertices† [33] 78.26 - - -
Random Forest‡ [65] 88.60 - - -

SVM‡ [65] 83.70 - - -
Naive Bayes‡ [65] 81.20 - - -

Table 6: Comparison of results of joint activities

results are summarized in Table. 4.
After that, we compare our results of independent parallel activity recog-

nition with another reference [34] (see Table. 5). In this comparison, we use
leave-one-out method to evaluate the performance. The results are classified
by different residents and the types of activities. According to the results un-
der different metrics, we could find that our FCA-based method outperforms
the other HMM-based methods. In the part of recognizing joint activities,
the FCA-based method also has excellent performance (see Table. 62). It
has obtained the best results in terms of precision, recall and F-measure.

The proposed FCA-based model has better capacity than the previous
version [17] while identifying similar activities. This is because the newly
added transition matrices can be useful when two patterns are highly sim-
ilar. On the premise of keeping the context information, the FCA-based
model with the transition matrices reduces the influence of imbalanced dis-
tributions of training data and enforce the impact of internal regulars of
patterns. Even two patterns consist of the same sensors events, their sequen-
tial contexts would be different. It means that for a sensor event in two highly

2the methods marked by † use the leave-one-out cross-validation, the one marked by *
uses the 5-fold cross-validation, and the ones marked by ‡ use the 10-fold cross-validation.
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similar patterns, its previous and successive sensor events will not always be
the same ones. Compared with two HMM methods in [51], the overall per-
formance of activity recognition has increased 37.02% and 22.76%. In the
LOOV experiments, our methods improve 4.51% and 2.71% accuracies.

Besides, the FCA-based model simulates the real scenarios that include
the interweaving patterns. There is no explicit segmentation to reveal the
beginning and end of a sequence indicating an activity. To determine a
sensor data belongs to which patterns, the conventional HMM methods use
a series of probabilities such as joint and transition probabilities to judge
the affiliations of a sensor data. If a posteriori probability is lower than a
threshold, then the systems will judge that it belongs to another pattern. In
our method, we do not directly use probability to evaluate the confidential
degrees, however, we make the decision from the semantic parts. If a sensor
data has great semantic gaps with the others, then it will be judged as one
part of another pattern.

Comparing with the HMM methods, the FCA-based models can give a
scope of possible ongoing activities and refine the results by the RMSD assess-
ment. However, it works well only for the independent activities performed
in parallel. This is because one person’s activities will be affected by another
one, especially for the cooperative activities. Thus, the RMSD assessment
has to wait for enough data to infer the most reliable recognition in the case
of cooperative activity recognition.

The FCA-based models have considered the robustness problem about
handling noisy sensor data. For each unseen pattern that is not in the train-
ing dataset, but in the test dataset, the models will compare its similarity
with learned patterns and propose the most similar activity cluster as the
recognition result. Similar to handle with noisy sensor data, in [66], we de-
fined six common anomalies existing in the behavioral patterns of people with
Alzheimer’s disease and proposed their solutions. Likewise, in the worst case,
unreliable sensor data will be evaluated and classified into a similar activity
cluster.

6. Conclusion

In this paper, we address the problem of multi-resident activity recogni-
tion in non-intrusive sensor-based smart homes. We use a knowledge-driven
sequential pattern mining solution based on formal concept analysis to dis-
cover knowledge from sequential and temporal data. A graphical knowledge
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base is automatically constructed by the formal lattice. Using a lattice search
strategy, we can automatically and incrementally infer the most possible on-
going activities given a part of observed data. The incremental knowledge
retrieval makes the static formal lattice containing ontological knowledge be-
come dynamic. The combination of the graphical knowledge base and the
transition information make the FCA-based model reduce the dependency of
stable data distribution in the training data. The experimental results show
that the recognition accuracy outperforms than some traditional statistical
or probabilistic models. In the future, we will explore a better measure for
evaluating possible candidates than the RMSD one. Moreover, the tempo-
ral relations such as time interval between two sensor events will also be
considered in the future improvement.
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[25] Qin Ni, Ana Belén Garćıa Hernando, and Iván Pau de la Cruz. The el-
derly’s independent living in smart homes: A characterization of activi-
ties and sensing infrastructure survey to facilitate services development.
Sensors, 15(5):11312–11362, 2015.

[26] Liming Chen, Jesse Hoey, Chris D Nugent, Diane J Cook, and Zhiwen
Yu. Sensor-based activity recognition. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6):790–
808, 2012.

[27] Corinne Belley, Sebastien Gaboury, Bruno Bouchard, and Abdenour
Bouzouane. Nonintrusive system for assistance and guidance in smart
homes based on electrical devices identification. Expert Systems with
Applications, 42(19):6552–6577, 2015.

[28] Giovanni Acampora, Diane J Cook, Parisa Rashidi, and Athanasios V
Vasilakos. A survey on ambient intelligence in healthcare. Proceedings
of the IEEE, 101(12):2470–2494, 2013.

[29] Oscar D Lara and Miguel A Labrador. A survey on human activity
recognition using wearable sensors. IEEE Communications Surveys and
Tutorials, 15(3):1192–1209, 2013.

[30] David Barber. Bayesian reasoning and machine learning. Cambridge
University Press, 2012.

[31] Aaron S Crandall and Diane J Cook. Using a hidden markov model for
resident identification. In Proceedings of the 2010 Sixth International
Conference on Intelligent Environments, pages 74–79. IEEE Computer
Society, 2010.

[32] Li Liu, Shu Wang, Guoxin Su, Zi-Gang Huang, and Ming Liu. Towards
complex activity recognition using a bayesian network-based probabilis-
tic generative framework. Pattern Recognition, 68:295–309, 2017.

[33] Yi-Ting Chiang, Kuo-Chung Hsu, Ching-Hu Lu, Li-Chen Fu, and Jane
Yung-Jen Hsu. Interaction models for multiple-resident activity recogni-
tion in a smart home. In International Conference on Intelligent Robots
and Systems, pages 3753–3758. IEEE, 2010.

37



[34] Asma Benmansour, Abdelhamid Bouchachia, and Mohammed Feham.
Modeling interaction in multi-resident activities. Neurocomputing,
230:133–142, 2016.

[35] Liang Wang, Tao Gu, Xianping Tao, Hanhua Chen, and Jian Lu. Rec-
ognizing multi-user activities using wearable sensors in a smart home.
Pervasive and Mobile Computing, 7(3):287–298, 2011.

[36] Yi-Ting Chiang, Ching-Hu Lu, and Jane Yung-Jen Hsu. A feature-based
knowledge transfer framework for cross-environment activity recogni-
tion toward smart home applications. IEEE Transactions on Human-
Machine Systems, 47(3):310–322, 2017.

[37] Yaqing Liu, Dantong Ouyang, Yong Liu, and Rong Chen. A novel
approach based on time cluster for activity recognition of daily living in
smart homes. Symmetry, 9(10):212, 2017.

[38] Rong Chen and Yu Tong. A two-stage method for solving multi-resident
activity recognition in smart environments. Entropy, 16(4):2184–2203,
2014.

[39] Markus Prossegger and Abdelhamid Bouchachia. Multi-resident activity
recognition using incremental decision trees. In Adaptive and Intelligent
Systems, pages 182–191. Springer, 2014.

[40] Kuo-Chung Hsu, Yi-Ting Chiang, Gu-Yang Lin, Ching-Hu Lu, Jane
Yung-Jen Hsu, and Li-Chen Fu. Strategies for inference mechanism of
conditional random fields for multiple-resident activity recognition in
a smart home. In International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems, pages 417–426.
Springer, 2010.

[41] Hongqing Fang and Chen Hu. Recognizing human activity in smart
home using deep learning algorithm. In Control Conference (CCC),
2014 33rd Chinese, pages 4716–4720. IEEE, 2014.

[42] Stefan Oniga and Jozsef Suto. Human activity recognition using neu-
ral networks. In Control Conference (ICCC), 2014 15th International
Carpathian, pages 403–406. IEEE, 2014.

38



[43] Licheng Zhang, Xihong Wu, and Dingsheng Luo. Human activity recog-
nition with HMM-DNN model. In Cognitive Informatics & Cognitive
Computing (ICCI* CC), 2015 IEEE 14th International Conference on,
pages 192–197. IEEE, 2015.

[44] Juan Ye, Graeme Stevenson, and Simon Dobson. Kcar: A knowledge-
driven approach for concurrent activity recognition. Pervasive and Mo-
bile Computing, 19:47–70, 2015.

[45] Mohammad Arif Ul Alam, Nirmalya Roy, Archan Misra, and Joseph
Taylor. Cace: Exploiting behavioral interactions for improved activity
recognition in multi-inhabitant smart homes. In International Confer-
ence on Distributed Computing Systems, pages 539–548. IEEE, 2016.

[46] Charu C Aggarwal. Data mining: the textbook. Springer, 2015.

[47] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts
and techniques. Elsevier, 2011.

[48] Salah Althloothi, Mohammad H Mahoor, Xiao Zhang, and Richard M
Voyles. Human activity recognition using multi-features and multiple
kernel learning. Pattern recognition, 47(5):1800–1812, 2014.

[49] Ahmad Jalal, Md Zia Uddin, and T-S Kim. Depth video-based human
activity recognition system using translation and scaling invariant fea-
tures for life logging at smart home. IEEE Transactions on Consumer
Electronics, 58(3), 2012.

[50] Ahmad Jalal, Yeon-Ho Kim, Yong-Joong Kim, Shaharyar Kamal, and
Daijin Kim. Robust human activity recognition from depth video using
spatiotemporal multi-fused features. Pattern recognition, 61:295–308,
2017.

[51] Geetika Singla, Diane J Cook, and Maureen Schmitter-Edgecombe. Rec-
ognizing independent and joint activities among multiple residents in
smart environments. Journal of ambient intelligence and humanized
computing, 1(1):57–63, 2010.

[52] Asma Benmansour, Abdelhamid Bouchachia, and Mohammed Feham.
Multioccupant activity recognition in pervasive smart home environ-
ments. ACM Computing Surveys, 48(3):34, 2016.

39



[53] Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathe-
matical foundations. Springer Science & Business Media, 1999.

[54] Carmen De Maio, Giuseppe Fenza, Vincenzo Loia, and Mimmo Par-
ente. Time aware knowledge extraction for microblog summarization on
twitter. Information Fusion, 28:60–74, 2016.

[55] Vincenzo Loia, Giuseppe Fenza, Carmen De Maio, and Saverio Salerno.
Hybrid methodologies to foster ontology-based knowledge management
platform. In Intelligent Agent (IA), 2013 IEEE Symposium on, pages
36–43. IEEE, 2013.

[56] Carmen De Maio, Giuseppe Fenza, Vincenzo Loia, and Sabrina Sen-
atore. Hierarchical web resources retrieval by exploiting fuzzy formal
concept analysis. Information Processing & Management, 48(3):399–
418, 2012.

[57] Jonas Poelmans, Dmitry I Ignatov, Sergei O Kuznetsov, and Guido
Dedene. Formal concept analysis in knowledge processing: A survey on
applications. Expert systems with applications, 40(16):6538–6560, 2013.

[58] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms
and applications. CRC press, 2013.

[59] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data
Mining: Practical machine learning tools and techniques. Morgan Kauf-
mann, 2016.

[60] Sergei O Kuznetsov and Sergei A Obiedkov. Comparing performance of
algorithms for generating concept lattices. Journal of Experimental &
Theoretical Artificial Intelligence, 14(2-3):189–216, 2002.

[61] Christian Lindig. Fast concept analysis. In International Conference on
Conceptual Structures, pages 152–161, 2000.

[62] Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence, pages 1137–1143, 1995.

[63] Diane J Cook and Maureen Schmitter-Edgecombe. Assessing the qual-
ity of activities in a smart environment. Methods of information in
medicine, 48(5):480, 2009.

40



[64] Diane J Cook. Learning setting-generalized activity models for smart
spaces. IEEE intelligent systems, 27(1):32–38, 2012.

[65] Raihani Mohamed, Thinagaran Perumal, Md Sulaiman, Norwati
Mustapha, MN Zainudin, et al. Multi label classification on multi res-
ident in smart home using classifier chains. Advanced Science Letters,
24(2):1316–1319, 2018.
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