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Abstract

Smart homes are typical nonstationary environments that keep generating

new data. Ideally, predictive models learned from historical data should

automatically adapt to new data without retraining. However, for many

data mining algorithms, adding new data with new features to an existing

model means we need to retrain the entire model. Compared with static

ones, the models having incremental learning mechanisms are more suitable

for handling streaming data in the aspect of self-adaptation. Therefore,

we propose an incremental algorithm based on the formal concept analysis

(FCA) for mining sequential patterns and apply it to recognize various hu-

man behavioral patterns in nonstationary sensor-based smart homes. It can

automatically adapt to new training data with new classes or features to

enhance the currently built model and have competitive recognition results

compared to other classical graphical models.
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1. Introduction

Currently, machine learning or data mining methods have been widely

applied to our lives. Most recent real-world applications built by these

methods usually assume that there is no change in probability distribution

between training data and unseen out-of-sample data. However, many prac-

tical problems cannot satisfy this assumption. Their predictions are also

biased. An environment that generates data with unstable probability dis-

tributions over time is a nonstationary environment. Learning in such an

environment (or learning concept drift [1, 2]) has been investigated by var-

ious approaches, such as transfer learning [3], adaptive learning [4, 5], and

incremental learning [5, 6]. Their common idea is to adapt trained models

to new unseen data with imbalanced classes or with dynamic changes in

distribution.

Activity recognition in sensor-based smart environments is a challenging

study in the field of ambient intelligence [7]. By using a dynamic wireless

sensor network, massive data describing environmental changes caused by

human activities can be captured in real-time. In such nonstationary envi-

ronments, newly collected data containing new target activities and sensor

events can be used to improve the performance of current systems. Thus,

there are higher requirements and expectations on how to update a built

model with less training costs.

While most activity recognition systems train their models from histori-
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cal data, the collected behavioral patterns cannot cover all possibilities. This

is because a resident may perform the same activities in different ways. The

systems should learn additional information from the new training data to

improve accuracy and robustness. Sometimes, the sensor layout of a smart

environment can be extended with new sensors or new target activities. We

hope that the systems can automatically adapt to these changes and up-

date the trained model only with new data having new features to avoid

retraining.

In terms of the integration of new data, the scalability of an activity

recognition model is one of the most important requirements of the sensor-

based smart environments. This is because smart environments are usually

nonstationary, which constantly consider and introduce new situations. The

performance of a model often becomes less accurate as time passes, because

the statistical properties or probability distributions may change over time in

unforeseen ways [5, 8]. Therefore, the recognition model needs to constantly

update itself to accommodate these new changes. Furthermore, when the

current layout of the smart environment is not sufficient to identify all the

target activities, new sensors can be deployed to enhance the ability to

distinguish between misclassified activities.

However, non-incremental learning methods are usually static, which

means that they first import all available data for training, and then use

the immutable constructed models for prediction, classification or pattern

recognition. When non-incremental learning models want to improve their

performance with new training data, they must be rebuilt in most cases

to accommodate new training data or introduce new features. However, as
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the training data increases, the time spent on reconstruction increases at

the same time. Without an effective solution, frequent and time-consuming

model training is intolerable for most smart environment applications.

In this paper, we introduce an incremental learning method to improve

current activity recognition models based on the formal concept analysis

(FCA) [9, 10, 11, 12]. Unlike most FCA incremental lattice construction

algorithms that only update FCA-based models by data with fixed features,

the newly proposed one enables the system to integrate new data with new

features into current FCA-based models and satisfies the requirement of

scalability.

The remainder of the paper is organized as follows. Section 2 outlines re-

lated work using incremental learning to solve activity recognition problems

in sensor-based smart environments. Section 3 describes the preliminaries

about formal concept analysis and our proposed incremental lattice con-

struction algorithm. Section 4 compares the performance of the proposed

algorithm with the others under the same benchmark dataset. The conclu-

sion is reported in Section 5.

2. Related Work

Considering the complexity, flexibility, and variability of the situations

when recognizing human behavioral patterns in smart environments, differ-

ent methods and architectures are proposed by scientific communities. Their

common practice is to make appropriate changes based on classic algorithms

such as decision tree, random forests, naive Bayes and neural networks, etc.
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For instance, Lu et al. [13] proposed a Hybrid User-assisted Incremen-

tal Model Adaptation (HUIMA) to reconfigure previously learned activity

models within a dynamic environment. HUIMA consists of an automatic

mechanism for simplifying the unseen data annotation task, and an en-

hanced Dynamic Bayesian Network model for incrementally updating the

models by new annotated data. However, the correctness of data anno-

tation cannot be always guaranteed. Another data-annotation wizard with

human interventions was used in case of ambiguity. However, it will decrease

the capability of self-adaptation of the model.

Wang et al. [14] combined probabilistic neural networks (PNN) and an

adjustable fuzzy clustering algorithm (AFC) to build an incremental learning

method for sensor-based human activity recognition. Their process of adding

or removing an activity is almost independent of the pattern neurons of

other activities. They tested their method with their own dataset. However,

the generalization capability of the proposed method was limited by their

subject-independent training.

Hu et al. [15] proposed an incremental growing mechanism of the decision

tree and a novel splitting strategy to construct Class Incremental Random

Forests (CIRF). Their solution can tackle the dynamic changes in activity

recognition. However, the CIRF algorithm required maintaining large-scale

training samples all the time.

ID5R [16] is an incremental algorithm for inducing decision trees equiv-

alent to Quinlan’s non-incremental ID3 algorithm [17]. It allows the induc-

tion process to learning tasks in which training data are presented serially.

Because the ID5R algorithm does not support to handle numeric variables,
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multi-class classification tasks, or missing values, an extension of ID5R which

incrementally augments leaf nodes and allows them to be multi-labeled is

proposed in the work of Prossegger and Bouchachia [18]. A loosely-coupled

Hierarchical Dynamic Bayesian Network (HDBN) is proposed by Alam et al.

[19] to exploit the spatio-temporal relationships across the activities. Their

method was evaluated using their own dataset. However, a state space prun-

ing should be performed before employing the model for complex activity

recognition.

Considering heterogeneous concept drift, Losing et al. [20] proposed a

self-adjusting memory model for the k-nearest neighbors (KNN) algorithm.

They realized a non-parametric KNN constructing two different memories:

the short-term memory (STM) containing data of the current concept and

the long-term memory (LTM) maintaining knowledge of past concepts. The

conflicting information between the two memories is removed and the rest

is compressed.

As a thriving field with many successful applications, deep learning has

been introduced to classify human activities. For example, Deepika et al.

[21] proposed a recurrent neural network model based on the Long Short-

Term Memory (LSTM) classifier for activity recognition. However, adding

a new ability to neural networks often results in so-called “catastrophic

forgetting” that neural networks completely and abruptly forget previously

learned information upon learning new information. At most of the time,

retraining the entire model is necessary to preserve performance. Alternative

solutions may involve supervised fine-tuning of networks or transfer learning

[22].
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At last, the survey conducted by Ditzler et al. [23] roughly divided

algorithms learning in nonstationary environments to active and passive ap-

proaches. Once a change in the data distribution is detected, the active

approaches discard the obsolete knowledge and adapt to the new environ-

ments, while the passive ones continuously update the model over time.

From this point of view, our proposed algorithm can be classified as the

active one. The adaptation mechanism is activated if and only if new data

will change the structure of the predictive model, which means that the new

patterns are unseen for training before.

In brief, the incremental designs of most of the previous studies are

limited by their algorithms, without considering the complicated situations

and frequent layout updates in smart environments. Some of them only

take into account for incremental training and focus only on learning new

data with stable classes and features. It is unrealistic in the nonstation-

ary smart environments. It is also difficult to apply them directly to solve

complex activity recognition, such as composite and multi-resident scenarios

[10, 12]. Incremental algorithms should separately identify the parts of the

original model that need to be modified and the ones that do not need to

be modified. In addition, to ensure correctness, an updated model built by

an incremental algorithm should have the same or similar performance as

other non-incremental ones.

3. FCA-based Incremental Activity Recognition

Formal concept analysis (FCA) is an efficient knowledge-driven solution

to represent and discover knowledge from heterogeneous data. It is widely
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used in various domains like knowledge discovery [24], ontology learning [25]

and information retrieval [26]. Similar to association rule learning, its typical

utilization is to discover interesting relations (such as frequent itemsets)

between variables in large databases.

FCA-based model is a kind of inductive learning methods. Without

providing any preamble about how the inferences work, rules are summa-

rized from specific examples or cases. Its concept learning process is more

transparent than black box models.

Figure 1: Overview procedure of FCA learning

Like the other data mining methods, the process of obtaining formal

lattice from raw data is called “learning” or “training”. Figure. 1 depicts

the overview procedure of FCA learning. It represents how to construct the

Hasse diagram, a visual knowledge base, by using sequential sensor data.

First of all, binary relations between activities and sensor data are extracted

from captured sensor data. The extracted relations should be represented in

an FCA binary matrix. It is usually implemented by an ad-hoc script on the

basis of the original format of captured sequences. Then, specific algorithms

of lattice construction [27, 28] will explore all the maximal closed clusters

through FCA matrix, and sort them by their partial orders. They are the

key processes in the FCA modeling and emphasized in gray in the figure.
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3.1. Formal Concept Analysis

Formal concept analysis (FCA) is a mathematical theory based on the

conceptual hierarchy [29]. The correlations between defined target classes

and selected features can be unified as homogeneous binary relations. By

using a specific lattice construction algorithm, FCA firstly clusters similar

classes (i.e. activities to be recognized) sharing the same ontological features

(i.e. sensor data), then encapsulates the discovered itemsets as inferences,

and finally orders them for fast retrieval. Therefore, based on such a key-

value tuple structure of itemsets, the FCA-based model can infer the ongoing

activities of residents according to partially observed sensor data.

To analyze temporal and sequential patterns, first of all, correlations

between target classes and features have to be extracted from data and

reformulated into a specific data structure named formal context.

Formal context K(G,M, I) is triplet structure consisting of two disjoint

sets G and M , and their Cartesian product set I= G × M . It can be

represented and visualized by a |G| × |M | matrix. The elements in G are

formally called objects, which represent coarse-grained target classes (i.e.

activities to be recognized). The ones in M are called attributes, which

represent fine-grained observable features (i.e. captured sensor data). If

g ∈ G is correlated with m ∈ M , the correlation could be written as gIm

[29].

To extract and reformulate correlations from sensor data, if a sensor

event mj appears in the sequence describing an activity gi, it means giImj ,

then a cross will be filled in the row gi and column mj in the binary matrix.

Fig. 2 shows a concrete example. It is generated from a simplified version
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Simplified CASAS Activities [30]
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Fill medication dispenser g1 × × ×
Hang up clothes g2 × × × ×
Move furniture g3 × ×
Read magazine g4 × × ×
Water plants g5 × ×
Sweep floor g6 × × × × × × ×
Play checkers g7 × ×
Prepare dinner g8 × ×
Set table g9 × × ×
Read magazine g10 × ×
Pay bills g11 × ×
Pack picnic food g12 × ×
Retrieve dishes g13 × × × × ×
Retrieve dishes g13′ × × × ×
Pack picnic supplies g14 × × ×
Pack and bring supplies g15 × × × × × ×

Figure 2: Binary matrix representing the correlations between activities gi and sensor
data mj .

of the CASAS benchmark dataset [30]. There are fifteen activities described

by thirteen non-intrusive sensors passively capturing human behaviors in a

smart apartment. It is worth mentioning that g13 and g13′ are two different

patterns to implement the same activity “Retrieve dishes”.

3.1.1. Similarity Maximization by Concept-Forming Operations

In the data clustering technique of data mining, similarity metrics are

essential to generate clusters [31]. Similarly, FCA also has its own metrics to

maximize similarity. Items in the same itemset have high similarity because

they share the same ontological features.

A pair of FCA similarity metrics, so-called the concept-forming operators
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is introduced. For a subset G1 ⊆ G, we define

G′
1 := {m ∈ M | for all g ∈ G1, gIm} (1)

as a closure operation to find out all the sensor data G′
1 ⊆ M that are jointly

shared by all the activities in G1. Likewise, for M1 ⊆ M , we define

M ′
1 := {g ∈ G | for all m ∈ M1, gIm} (2)

as another one to find out all the activities M ′
1 ⊆ G that jointly share the

same sensor data M1 [29].

For instance, as shown in Fig. 2, {m3m10}′ = {g2g6g9g15} and {g2g6g9g15}′ =

{m3m10m13}. Using the two operators at the same time, FCA can gener-

ate stable key-value itemsets named formal concepts from a binary matrix,

which cluster similar activities sharing the same sensor data.

3.1.2. Cluster Representation by Formal Concept

In order to infer ongoing activities from given observable sensor data,

FCA clusters similar activities according to different centroids, and encap-

sulate these inferences in the itemsets. Moreover, to ensure the reliability

of inferences, FCA only uses the itemsets that simultaneously satisfy the

two concept-forming operations. The satisfied itemsets are so-called formal

concepts.

Formal concept c := (G1,M1) is a closure under the limitation of the

concept-forming operations where (G′
1)

′ = (M1)
′ = G1. G1 is called the

extent of c, written as ext(c). Likewise, M1 is called the intent of c, written
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as int(c) [29], which is also treated as the centroid of a cluster [31]. The

space of all the formal concepts is denoted by B(G,M, I).

Figure 3: Key-value structure of formal concept

As shown in Fig. 3, each formal concept consists of two parts. An

extent is the value of the key-value structure, it indicates the inferred ongoing

activities given the observed key from an intent. A concept c clusters similar

activities ext(c) based on their shared sensor data in the int(c). Furthermore,

if an observed sequence α ⊂ int(c), the elements in the ext(c) indicate the

recognized ongoing activities given α.

{ g2g6g9g15︸ ︷︷ ︸
possible ongoing activities

,

current observed data︷ ︸︸ ︷
m3m10m13 }

In the example above, ext(c) = {g2g6g9g15} and int(c) = {m3m10m13}.

As described in Section 3.1.1, the sensor data in int(c) exist in all the pat-

terns of activities in ext(c). Therefore, if current observed data are m3,m10

and m13, the scope of possible ongoing activities should be g2, g6, g9 or g15.

3.1.3. Cluster Indexation by Formal Concept Lattice

After the generation of concepts clustering similar objects by different

centroids (i.e. feature variables), FCA provides an automatic solution to
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index all the discovered concepts according to a mathematical order. The

objective is to efficiently manage and construct a graph-based knowledge

base to fast retrieve inferences.

Formal concept lattice B is an ordered version of B(G,M, I). All the

concepts inB(G,M, I) are ordered by a predefined partial order⪯ indicating

hierarchical relations between two concepts [29].

Suppose (G1,M1) and (G2,M2) are two concepts, (G1,M1) is called

the subconcept of (G2,M2) if either G1 ⊆ G2 or M2 ⊆ M1, written as

(G1,M1) ⪯ (G2,M2). The symbol ⪯ is named as the hierarchical order.

Meanwhile, (G2,M2) is the superconcept of (G1,M1). It is worth pointing

out that the subconcept and the superconcept of a concept are not unique

in B(G,M, I) due to the existing transitive relation.

Lattice construction is a process that first discovers all the concepts of

context K by the concept-forming operations, and then orders them simul-

taneously. In recent decades, great efforts have been devoted to efficiently

construct an FCA lattice [27, 32, 33, 34, 35, 36].

For instance, three concepts, {g6g8g13g13′ ,m10m11}, {g6g13g13′ ,m8m9m10m11}

and {g13,m4m8m9m10m11}, are discovered from the matrix in Fig. 2. As

shown in Equation (3), the last two concepts are the superconcepts of the

first one.

{g13,m4m8m9m10m11} ⪯ {g6g13g13′ ,m8m9m10m11}

⪯ {g6g8g13g13′ ,m10m11}
(3)

The relations among concepts having different centroids are established
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and linked by the hierarchical order. Thus, a lattice B could be visualized

as a graphical model.

3.1.4. Knowledge Visualization by Hasse Diagram

In mathematics, a finite partially ordered set could be depicted by a

Hasse diagram. In our case, a lattice B could also be visualized as an

undirected graph, such as the one shown in Fig. 4. Each node refers to a

discovered concept, and partial orders are represented by edges, which are

also named Galois connections [29].

Figure 4: Hasse diagram of Matrix in Fig. 2

There are two special nodes in a Hasse diagram: the topmost one {G,∅}

named Supremum and the lowermost one {∅,M} named Infimum. Once the

Hasse diagram is built, the next step is to use efficient algorithms to retrieve
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knowledge encapsulated inside concepts from the graphical structure.

For example, as can be seen in Fig. 4, concepts are organized by different

levels. From the top to down in a Hasse diagram, the scope of possible

activities shrinks when more sensor data are observed.

3.1.5. Applications of FCA-based Models

For the principle of FCA inference, the scope of possible activities shrinks

while more and more sensor data are observed. To locate the most relevant

concept based on the observed data, we need an efficient inference retrieval

algorithm. For this reason, we proposed a concept retrieval algorithm called

Half-Duplex Search (HDS) algorithm [9]. It can be treated as an algorithm

using an observed key to search for the key-value formal concept with the

best corresponding value. It is the basic algorithm used in our previous

research [10, 11, 12]. It consists of two parts: the top-down search of HDS

algorithm can fast retrieve a concept with a value satisfying the key, and the

bottom up search of HDS algorithm can further find and ensure the optimal

one.

An overview of the FCA-based activity recognition framework is given

in Fig. 5. The framework is divided into two individual modules. One mod-

ule focuses on incremental learning, and the other focuses on recognizing

activities in smart environments. In the recognition module, there are sev-

eral ad-hoc inference retrieval strategies for different scenarios. The number

of residents directly affects the choice of these strategies. For one resident

performing simple activities in smart homes, we proposed the basic search-

ing strategy to recognize activities without complex patterns [9]. For more
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complex situations such as the sequential activities performed in a continu-

ous and sequential mode without interweaving execution, or the interleaved

ones performed with pauses, or the ones concurrent performed together in

a period of time, the search strategy pays more attention to the analysis of

the characteristics of each mode, and then recognize each case [10]. In [11],

we proposed another solution for detecting cognitive errors. We analyzed

the behavioral patterns of people suffering from cognitive impairment and

defined six common cognitive errors and their typical abnormal behavioral

patterns.

Figure 5: Recognizing activities in smart environments

3.2. Incremental Algorithm for Constructing Concept Lattice

As mentioned before, different lattice construction algorithms have quite

different performances in terms of memory consumption and processing

time. Our incremental method is based on an algorithm proposed by Valtchev

and Missaoui [28]. This algorithm is an efficient lattice building approach

which is more effective than many classic incremental algorithms such as

Godin et al. [32, 35], Norris [36] and other batch ones, such as Bordat [33],
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Ganter [34] and Fast [27]. It investigates the incremental updating of the

constructed lattice by a set of previously unseen labeled sequences of sensor

data. Its basic idea is to recognize the lattice parts requiring restructuring

and to carry out the reconstructing at a minimal cost. Thus, two categories

of formal concepts must be identified: those which changed their extent and

those which remain the same. The latter is further qualified as if it gives

rise to a new concept. However, its implementation [32] does not consider

updating new data with new features. The implementation assumes that

the feature space is stable and all the new training items only involve those

existing features. For our new extension, we incrementally update the fea-

ture space when a new labeled training item is available. Therefore, our

new approach can analyze the subsumption relations between concepts in

considering new features on the fly. It can handle the new training items

that have never seen before with unseen features.

Thus, in Algorithm 1, we illustrate the extension of incrementally up-

dating a constructed lattice. The input data D is a collection of labeled

sequences of sensor data that arrive gradually. To achieve an incremen-

tal manner, as an extension, the space of features is incrementally updated

(lines 2-3). The algorithm initializes a lattice if it does not exist before (Lines

4-8). For each item in the new training dataset, an iteration of the lattice

verifies whether the iterated concept should be updated, created or ignored

(lines 9-26). We optimize and simplify the logic of an internal function

called minAdjacentParent, described in Algorithm 2. The updated lattice

B+ normally exists in the memory and can be serialized in a database or in

a disk file. Compared with batch algorithms, our proposed algorithm can
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Algorithm 1: Extended Valtchev Algorithm
Data: A constructed lattice B, a new training dataset

D = (X,Y)= {(x(0), y(0)), (x(1), y(1)), ..., (x(m), y(m))}, the space of new
features M.

Result: Updated lattice B+.
1 begin
2 if M ∩ X ̸= X then
3 M = M ∪ X

4 if B = ∅ then

5 supremum = newConcept(y(0), x(0))
6 infimum = newConcept(∅,M)
7 createLink(supremum, infimum)

8 modified= ∅
9 foreach (x(i), y(i)) ∈ D do

10 foreach c ∈ B do

11 if int(c) ⊆ y(i) then

12 ext(c) = ext(c) ∪ y(i), mark it as modified
13 else

14 n = newConcept(ext(c) ∪ y(i), int(c) ∩ x(i))
15 m = minAdjacentParent(n,c)
16 createLink(m, n)
17 if ext(m) has been modified then
18 dropLink(m, c)
19 end
20 createLink(n, c)
21 if c==supremum then
22 supremum=n
23 end

24 end

25 end

26 end

27 end

Algorithm 2: Discover Adjacent Super Concept

Function minAdjacentParent(m,c)
Data: Concept m to compare, current concept c
Result: Adjacent parent of c having minimal superset of ext(m)

1 parents = sorted(parents(c))
2 foreach p ∈ parents do
3 if ext(m) == ext(m) ∩ ext(p) then
4 return p
5 end

6 end
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update current model by new training data and reduce the time of lattice

construction by avoiding retraining. It is quite suitable for data mining

in nonstationary environments. However, because it is a knowledge-based

approach analyzing ontological relations among entities, it is difficult to

quantify uncertainty by itself.

4. Experiments and Results

The experiment is carried out on a desktop with an Intel Core i7-6700

CPU and 8GB of RAM running Windows 10. The benchmark dataset used

in the experiment is the Kyoto-4 dataset 1. It contains sensor data collected

by the smart apartment testbed of the CASAS laboratory of Washington

State University. The data represents two residents performing fifteen ac-

tivities in different ways in the apartment at the same time.

Although different activity recognition datasets may have different for-

mats, there are several essential data fields: timestamps, sensor id, sensor

value, and a label indicating the ground truth. The process about how to

convert raw sequential data to FCA matrix is given in Fig. 6. Once the fields

representing activity labels, sensor ids, and their values are determined, they

can be extracted and temporarily reserved for the following operations. It is

worth point out that a sensor event is the combination of sensor id and its

binary or nominal value. For continuous numeric values, they first should

be transformed into limited nominal ones.

Based on the space of indexed sensor data, we map the sequence into

1http://ailab.wsu.edu/casas/datasets/
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Figure 6: An example of the feature extraction and reformulation from a sequence of
sensor data to generate a row of FCA matrix

a row of FCA matrix. If a sensor event exists in the sequence describing

an activity, there is a cross in the corresponding element in the matrix.

After that, we explore and construct an FCA lattice by using FCA matrix.

There are 270 target classes with 73 sensor data in one of the leave-one-out

cross-validation training data of CASAS dataset. Thus, the binary matrix

consists of 270 rows and 73 columns, and it constructs a lattice with 29,118

formal concepts. It is worth mentioning that both incremental and non-

incremental lattice construction algorithms using the same training dataset

will produce the totally same lattice without any difference. Thus, their

recognition results are also the same, because the lattice construction and

pattern recognition are two independent modules.

4.1. Comparisons about Lattice Construction

We compare our results with both non-incremental and incremental al-

gorithms published in [27, 32, 33, 34], However, Godin and Norris algorithms
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Figure 7: Time of lattice construction

[32] cannot handle the training data having multi-level inheritance 2 [10].

Thus, Fig. 7 presents the time of lattice construction of three incremental

algorithms at different stages. The time consumption of lattice construction

increases while the amount of target classes (|G|) grows. However, almost

all the non-incremental algorithms load and generate the lattice by learn-

ing on the entire training dataset at once. Once a lattice is constructed,

it cannot be modified by any new training data. Thus, these algorithms

do not update the lattice one by one. Compared with the other two incre-

mental algorithms, ours sacrifices the efficiency in speed in exchange for the

functional expansion to incrementally update new data with new features.

The time intervals of all the iterations are shown in Fig. 8. As shown in

this figure, in the beginning, the time of each update tends to be stable, and

later, the time intervals begin to fluctuate. This is because when the lattice

construction has reached a certain dimension, the complexity of updating

2For two activities g1 and g2, their features having g′1 ⊆ g′2 or g′2 ⊆ g′1
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Figure 8: Time interval for each incremental update

Algorithm Type Time for Lattice Construction

Bordat [33] Batch 49.625s

Ganter [34] Batch 180.331s

Fast [27] Batch 9216.659s

Valtchev 1 [32] Incremental 25.449s

Valtchev 2 [32] Incremental 29.598s

Proposed Incremental 33.664s

Table 1: Comparison of results of lattice construction by different algorithms

becomes uncertain, largely depending on the relationship between the new

data and the old one.

In Table 1, a comparison of different lattice construction algorithms in-

cluding non-incremental and incremental ones is given. As shown, the in-

cremental algorithms construct faster than the non-incremental ones. This

provides us with a powerful practical basis for using incremental algorithms.

Our extension has paid an extra cost in speed. However, instead of using

all the data to retrain the entire model, new features like new sensor events

and new activities are allowed to incrementally update constructed lattice.
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Activity ID Activity CACE [19] FCA

1 Fill medication dispenser 0.932 1.0

2 Hang up clothes 0.965 1.0

3 Move furniture 0.973 1.0

4 Read magazine 0.607 1.0

5 Water plants 0.593 0.672

6 Sweep floor 0.955 1.0

7 Play checkers 0.945 1.0

8 Prepare dinner 0.976 0.958

9 Set table 0.943 1.0

10 Read magazine 0.923 1.0

11 Pay bills 0.98 1.0

12 Pack picnic food 0.955 0.724

13 Retrieve dishes 0.979 0.978

14 Pack picnic supplies 0.558 0.978

15 Pack and bring supplies 0.615 0.978

Overall Precision 0.965 0.989

Overall Recall 0.945 0.948

Overall F1-score 0.936 0.954

Table 2: Comparison of F1-score between two models

4.2. Comparisons about Activity Recognition

First of all, we compare our model with another one called CACE [19],

and show their results in Table. 2. CACE is a constraint and correlation

mining engine based on a loosely-coupled hierarchical dynamic Bayesian

network. It learns behaviorally-driven context correlations in the form of

association rules from data. Then, we also compare our model with derived

HMM methods described in [37] and the results are shown in Table. 3.

In this comparison, we use the same leave-one-out method to evaluate the

performance.

Based on the results shown in Table. 2, we can see that most of the

recognition results are excellent except for two activities: water plants (ac-

tivity g5) and picnic food (activity g12). The reason has been indicated in
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Approach Accuracy Precision Recall F-measure

CL-HMM [37] 91.47±7.5 91.68±6.1 92.12±6.42 91.89±6.17

LHMM [37] 93.27±6.21 93.58±5.41 92.68±6.18 93.1±5.62

FCA 95.98±1.27 97.97±0.93 97.94±0.41 97.75±0.68

Table 3: Performance of recognizing multi-resident activities using both non-incremental
and incremental methods

[30] that the activities with insufficient sensor data are difficult to be dis-

tinguished from other activities and lead to lower recognition results. In

the view of FCA models, the distinguishable ability of a sensor is negatively

correlated with the number of shared activity.

(a) new training data describing activity g5 with
new features iCAN OFF and iCAN ON

(b) new training data describing activity g12 with
new features iCupbord OFF and iCupbord ON

Figure 9: Constructed lattice enhanced by new data with new features

To solve this problem, we use new training data with new features to

help to distinguish the misclassified activities g5 and g12. We find that ac-

tivity g5 must interact with the watering can that is located in the hallway

closet, but activity g12 does not. Thus, we can add an RFID tag or other

sensors to monitor the moving states (e.g. iCAN ON and iCAN OFF )

of the watering can. Likewise, for activity g12, food has to be gathered

from the kitchen cupboard. Thus, we can monitor the open/close states

(e.g. iCupbord ON, iCupbord OFF ) of the kitchen cupboard. In the experi-

ment, simulative sequences with four new sensor events, iCupbord ON, iCup-
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bord OFF, iCAN ON and iCAN OFF, are incrementally introduced into the

constructed lattice for the enhancement of knowledge base (see Fig. 9).

Figure 10: Recognition results before and after incremental updates with new features

As can be seen from Fig. 10, the ability distinguishing activities g5

and g12 is greatly improved by new training data with new sensor data.

Moreover, the enhancement of introducing new features into the existing

lattice does not reduce the overall recognition rates.

5. Conclusions

Based on the excellent performance of formal concept analysis (FCA)

in pattern recognition, we proposed a new incremental learning method

for the FCA-based activity inference engine to dynamically integrate new

data with new features to existing models in nonstationary smart environ-

ments. Most incremental lattice construction algorithms only update the
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FCA-based models by data with fixed features. However, the proposed

incremental algorithm overcomes such a limitation and its performance out-

performs most non-incremental algorithms by avoiding retraining the entire

model. Moreover, the incremental mechanism for updating the constructed

FCA knowledge base is suitable for processing streaming data. Instead of

storing the entire training dataset, the update does not need to use previous

training data and directly modify the constructed lattice by new data. At

the same time, the independence of updating and recognition modules can

fast updating the model without interruption. The worldwide trends in pri-

vacy, data protection, and security [38] make transparent and explainable

FCA-based models easier to use in practice. All these features will ease the

maintenance burden of the inference engine and knowledge base.

According to the recognition results, new sensors or training data can

be dynamically added to the current model in order to improve the local

accuracy rates of misclassified activities. In the further, we may combine

the active learning [39] to reuse those well-recognized patterns to enhance

the knowledge base. The newly recognized patterns with high accuracy are

added to class-labeled data for incrementally updating the current model.

The updated model will continue to recognize unlabeled data. This process

will always repeat. In addition, we can combine other graphical models,

such as Bayesian classifiers, to evaluate the confidence of each inference

in a probabilistic manner. Because of similar layouts or adopted sensors

in smart environments, it would be interesting to reuse previously learned

knowledge in different scenarios. Therefore, methods combining transfer

learning and ensemble learning [39] will become active research areas to
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address this problem.
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behavioral pattern mining in non-intrusive sensor-based smart homes

using an intelligent activity inference engine. Journal of Reliable Intel-

ligent Environments, 3(2):99–116, 2017.
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